精英家教网 > 高中数学 > 题目详情
,若处的切线与直线垂直,则实
的值为         

试题分析:,该切线的斜率为,又直线
的斜率为,所以,所以.
点评:本题主要考查学生会利用导数求曲线上过某点切线方程的斜率和两直线垂直的判断,考查
了学生的计算能力和对导数的综合掌握,解题时注意转化思想的运用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

过原点作曲线的切线,则切线的斜率为             .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)若无极值点,但其导函数有零点,求的值;
(Ⅱ)若有两个极值点,求的取值范围,并证明的极小值小于

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数在区间上的最大值为_______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若函数处取极值,则            .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设a为实数, 函数 
(Ⅰ)求的极值.
(Ⅱ)当a在什么范围内取值时,曲线轴仅有一个交点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设曲线在点(1,)处的切线与直线平行,则     .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

己知函数是定义域为R的奇函数,且的导函数的图象如图所示。若正数满足,则的取值范围是(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知函数,,设
(Ⅰ)求函数的单调区间;
(Ⅱ)若以函数图像上任意一点为切点的切线的斜率恒成立,求实数的最小值;
(Ⅲ)是否存在实数m,使得函数的图像与函数的图像恰有四个不同的交点?若存在,求出实数m的取值范围;若不存在,说明理由。

查看答案和解析>>

同步练习册答案