精英家教网 > 高中数学 > 题目详情
16.在长方体ABCD-A1B1C1D1中,E、F分别是棱BC,CC1上的点,CF=AB=2CE,AB:AD:AA1=1:2:4,二面角A1-ED-F的正弦值$\frac{\sqrt{5}}{3}$.

分析 建立空间直角坐标系,利用向量法能求出二面角A1-ED-F的正弦值.

解答 解:如图所示,建立空间直角坐标系,点A为坐标原点,
设AB=1,依题意得D(0,2,0),F(1,2,1),A1(0,0,4),E(1,$\frac{3}{2}$,0).
$\overrightarrow{EF}$=(0,$\frac{1}{2}$,1),$\overrightarrow{E{A}_{1}}$=(-1,-$\frac{3}{2}$,4),$\overrightarrow{ED}$=(-1,$\frac{1}{2}$,0),
设平面EFD的一个法向量为$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{EF}=\frac{1}{2}y+z=0}\\{\overrightarrow{n}•\overrightarrow{ED}=-x+\frac{1}{2}y=0}\end{array}\right.$,令x=1,可得$\overrightarrow{n}$=(1,2,-1).
设平面A1ED的一个法向量为$\overrightarrow{m}$=(a,b,c),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{E{A}_{1}}=-a-\frac{3}{2}b+4c=0}\\{\overrightarrow{m}•\overrightarrow{ED}=-a+\frac{1}{2}b=0}\end{array}\right.$,取a=1,得$\overrightarrow{m}$=(1,2,1),
设二面角A1-ED-F的平面角为θ,
则cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{4}{\sqrt{6}•\sqrt{6}}$=$\frac{2}{3}$,
∴sinθ=$\sqrt{1-(\frac{2}{3})^{2}}$=$\frac{\sqrt{5}}{3}$.
∴二面角A1-ED-F的正弦值是$\frac{\sqrt{5}}{3}$.

点评 本题考查二面角的正弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.设等比数列{an}的前n项和Sn,若a2015=3S2014+2016,a2014=3S2013+2016,则公比q=(  )
A.2B.1或4C.4D.1或2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设数列{an}的前n项和为Sn,已知${S_n}=2{a_n}-1({n∈{N^*}})$
(I)求数列{an}的通项公式;
( II)若bn=log2an+1,求数列$\{\frac{1}{{{b_n}•{b_{n+1}}}}\}$的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某地区对高一年级学生的瞬时记忆能力进行调查,瞬时记忆能力包括听觉记忆能力与视觉记忆能力.现随机抽取某学校高一学生共40人,下表为该批学生瞬时记忆能力的调查结果.例如表中听觉记忆能力为中等,且视觉记忆能力偏高的学生为3人.
视觉
听觉
视觉记忆能力
偏低中等偏高超常
听觉
记忆
能力
偏低0751
中等183b
偏高2a01
超常0211
由于部分数据丢失,只知道从这40位学生中随机抽取一个,视觉记忆能力恰为中等,且听觉记忆能力为中等或中等以上的概率为$\frac{2}{5}$.
(1)试确定a、b的值;
(2)将抽取所得学生的频率视为概率,从该地区高二年级学生中任意抽取3人,设具有听觉记忆能力或视觉记忆能力偏高或超常的学生人数为ξ,求随机变量ξ的分布列与数学期望Eξ及方差Dξ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}{x=5cosφ}\\{y=bsinφ}\end{array}\right.$(φ为参数,0<b<5)
以O为极点,x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程为ρsin(θ-$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$c(c为曲线C的半焦距)
(Ⅰ)求曲线C的普通方程及直线l的直角坐标方程
(Ⅱ)点M为曲线C上任意一点,若点M到直线l的距离的最大值为4$\sqrt{2}$,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知点F是抛物线C:y2=x的焦点,点S是抛物线C上在第一象限内的一点,且|SF|=$\frac{5}{4}$.
(1)求点S的坐标;
(2)以S为圆心的动圆与x轴分别交于两点A,B,延长SA,SB分别交抛物线C于M,N两点,若直线MN与y轴上的截距b∈(-$\frac{1}{2}$,$\frac{3}{2}}$),求△SMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.某封闭几何体的三视图如图所示,则该几何体的表面积为222+6$\sqrt{41}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若sin$\frac{α}{2}$=$\frac{{\sqrt{3}}}{3}$,则cos2α的值为(  )
A.$\frac{1}{3}$B.$-\frac{2}{9}$C.$-\frac{7}{9}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设x,y满足约束条件$\left\{\begin{array}{l}x+y-8≤0\\ x-y-2≤0\\ x-2≥0\end{array}\right.$,则z=2x-y的最小值为-2.

查看答案和解析>>

同步练习册答案