分析 建立空间直角坐标系,利用向量法能求出二面角A1-ED-F的正弦值.
解答 解:如图所示,建立空间直角坐标系,点A为坐标原点,![]()
设AB=1,依题意得D(0,2,0),F(1,2,1),A1(0,0,4),E(1,$\frac{3}{2}$,0).
$\overrightarrow{EF}$=(0,$\frac{1}{2}$,1),$\overrightarrow{E{A}_{1}}$=(-1,-$\frac{3}{2}$,4),$\overrightarrow{ED}$=(-1,$\frac{1}{2}$,0),
设平面EFD的一个法向量为$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{EF}=\frac{1}{2}y+z=0}\\{\overrightarrow{n}•\overrightarrow{ED}=-x+\frac{1}{2}y=0}\end{array}\right.$,令x=1,可得$\overrightarrow{n}$=(1,2,-1).
设平面A1ED的一个法向量为$\overrightarrow{m}$=(a,b,c),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{E{A}_{1}}=-a-\frac{3}{2}b+4c=0}\\{\overrightarrow{m}•\overrightarrow{ED}=-a+\frac{1}{2}b=0}\end{array}\right.$,取a=1,得$\overrightarrow{m}$=(1,2,1),
设二面角A1-ED-F的平面角为θ,
则cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{4}{\sqrt{6}•\sqrt{6}}$=$\frac{2}{3}$,
∴sinθ=$\sqrt{1-(\frac{2}{3})^{2}}$=$\frac{\sqrt{5}}{3}$.
∴二面角A1-ED-F的正弦值是$\frac{\sqrt{5}}{3}$.
点评 本题考查二面角的正弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 1或4 | C. | 4 | D. | 1或2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 视觉 听觉 | 视觉记忆能力 | ||||
| 偏低 | 中等 | 偏高 | 超常 | ||
| 听觉 记忆 能力 | 偏低 | 0 | 7 | 5 | 1 |
| 中等 | 1 | 8 | 3 | b | |
| 偏高 | 2 | a | 0 | 1 | |
| 超常 | 0 | 2 | 1 | 1 | |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $-\frac{2}{9}$ | C. | $-\frac{7}{9}$ | D. | $\frac{7}{9}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com