精英家教网 > 高中数学 > 题目详情
计算下列各式的值:
(1)lg24-(lg3+lg4)+lg5;
(2)已知tanα=2,求
sin(α+3π)+cos(π+α)sin(-α)-cos(π+α)
的值.
分析:(1)原式利用对数的运算性质计算即可得到结果;
(2)原式利用诱导公式化简,整理后再利用同角三角函数间基本关系变形,将tanα的值代入计算即可求出值.
解答:解:(1)原式=lg24-lg(3×4)+lg5=lg24-lg12+lg5=lg
24
12
+lg5=lg2+lg5=lg(2×5)=lg10=1;
(2)∵tanα=2,
∴原式=
-sinα-cosα
-sinα+cosα
=
tanα+1
tanα-1
=3.
点评:此题考查了运用诱导公式化简求值,对数的性质,以及三角函数的化简求值,熟练掌握运算法则是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

计算下列各式的值:
(1)71+log75
(2)10lg9+lg2
(3)alogabblogbc(其中a,b为不等于1的正数,c>0)

查看答案和解析>>

科目:高中数学 来源: 题型:

计算下列各式的值:
(1)
3(-4)3
-(
1
2
)
0
+0.25
1
2
×(
-1
2
)
-4
;      (2)
2lg2+lg3
1+
1
2
lg0.36+
1
3
lg8

查看答案和解析>>

科目:高中数学 来源: 题型:

计算下列各式的值.
(1)lg12.5-lg
5
8
+lg
1
2

(2)2log510+log50.25;
(3)2log32-log3
32
9
+log38-3.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算下列各式的值:
(1)(0.0081) -
1
4
-[3×(
7
8
0]-1•[81-0.25+(3
3
8
 -
1
3
] -
1
2
-10×0.027 
1
3

(2)
(1-log63)2+log62•log618
log64

查看答案和解析>>

同步练习册答案