精英家教网 > 高中数学 > 题目详情

已知函数f(x)的导函数为f′(x)=2+cosx,x∈(-1,1),且f(0)=0,如果f(1-x)+f(1-x2)<0,则实数x的取值范围为


  1. A.
    (0,1)
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式数学公式
B
分析:先根据f′(x)=2+cosx,x∈(-1,1),且f(0)=0判断f(x)在(-1,1)上单调递增,进而根据函数的导函数求得函数f(x)的解析式,判断出函数f(x)为奇函数,进而根据f(1-x)+f(1-x2)<0,建立不等式组,求得x的范围.
解答:∵f′(x)=2+cosx>0,f(0)=0
∴f(x)在(-1,1)上单调递增
∵f(x)=2x+sinx,从而得f(x)是奇函数;
所以f(1-x)<-f(1-x2)=f(x2-1)即有解得
故选B.
点评:函数、导数、不等式的综合问题是代数中常见的问题,综合性强,主要考查推理能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

4、已知函数f(x)的导函数f′(x)=a(x+1)(x-a),若f(x)在x=a处取到极大值,则a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

14、已知函数f(x)的导函数f′(x)=2x-5,且f(0)的值为整数,当x∈(n,n+1](n∈N*)时,f(x)的值为整数的个数有且只有1个,则n=
2

查看答案和解析>>

科目:高中数学 来源: 题型:

18、已知函数f(x)的导数f″(x)满足0<f′(x)<1,常数a为方程f(x)=x的实数根.
(Ⅰ)若函数f(x)的定义域为M,对任意[a,b]⊆M,存在x0∈[a,b],使等式f(b)-f(a)=(b-a)f″(x0)成立,求证:方程f(x)=x存在唯一的实数根a;
(Ⅱ) 求证:当x>a时,总有f(x)<x成立;
(Ⅲ)对任意x1、x2,若满足|x1-a|<2,|x2-a|<2,求证:|f(x1)-f(x2)|<4.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的导函数为f'(x),且满足f(x)=2xf'(1)+lnx,则f(1)的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的导函数f′(x)的图象如图所示,那么(  )

查看答案和解析>>

同步练习册答案