精英家教网 > 高中数学 > 题目详情

试比较大小:(1);(2).从以上两小题的结论中,你能否得出更一般的结论?请加以证明.

答案:
解析:


提示:

先对不等式恒等变形,再用比较法说明理由.根据写出一般结论.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=(x-1)2,数列{an}是公差为d的等差数列,{bn}是公比为q(q∈R,q≠1)的等比数列.若a1=f(d-1),a3=f(d+1),b1=f(q-1),b3=f(q+1).
(Ⅰ)求数列{an},{bn}的通项公式;
(Ⅱ)若{cn}对n∈N*,恒有
c1
b1
+
c2
2b2
+
c3
3b3
+…+
cn
nbn
=
a
 
n+1
,求c1+c3+c5+…+c2n-1的值;
(Ⅲ)试比较
3bn-1
3bn+1
an+1
an+2
的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=e2x-1-2x-kx2
(Ⅰ)当k=0时,求f(x)的单调区间;
(Ⅱ)若x≥0时,f(x)≥0恒成立,求k的取值范围.
(Ⅲ)试比较
e2n-1
e2-1
2n3
3
+
n
3
(n为任意非负整数)的大小关系,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(x-1)2,数列{an}是公差为d的等差数列,数列{bn}是公比为q(q∈R且q≠1)的等比数列.若a1=f(d-1),a3=f(d+1),b1=f(q-1),b3=f(q+1)
(1)求数列{an},{bn}的通项公式;
(2)设数列{Cn}对任意正整数n均有
C1
b1
+
C2
b2
+…+
Cn
bn
=an+1
成立,求{Cn}的通项;
(3)试比较
3bn-1
3bn+1
an+1
an+2
的大小,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:2015届山东省高一暑假作业(一)数学试卷(解析版) 题型:解答题

已知二次函数y=f(x)(x∈R)的图像是一条开口向下且对称轴为x=3的抛物线,试比较大小:

(1)f(6)与f(4)

 

查看答案和解析>>

同步练习册答案