精英家教网 > 高中数学 > 题目详情
18.由下面样本数据利用最小二乘法求出的线性回归方程是$\widehat{y}$=-20x+a,则实数a=250
x88.28.48.68.89
y908483807568

分析 求出样本中心,利用回归直线方程求解即可.

解答 解:由题意,$\overline{x}$=8.5,$\overline{y}$=80.
∴样本中心坐标(8.5,80),
回归直线经过样本中心,可得80=-20×8.5+a,解得a=250.
故答案为:250.

点评 本题考查回归直线方程的应用,回归直线经过样本中心是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.一个圆台上、下底面半径分别为r、R,高为h,若其侧面积等于两底面面积之和,则下列关系正确的是(  )
A.$\frac{2}{h}$=$\frac{1}{R}$+$\frac{1}{r}$B.$\frac{1}{h}$=$\frac{1}{R}$+$\frac{1}{r}$C.$\frac{1}{r}$=$\frac{1}{R}$+$\frac{1}{h}$D.$\frac{2}{R}$=$\frac{1}{r}$+$\frac{1}{h}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)=ex+sinx在(0,f(0))处的切线方程为y=2x+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.(普通高中)已知关于x的二项式(x+$\frac{a}{\sqrt{x}}$)6展开式的常数项为15,则a=(  )
A.1B.±1C.2D.±2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.执行如图的程序后,输出的结果是(  )
A.1,3B.4,1C.0,0D.4,-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为30°,且|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=$\sqrt{3}$.
(1)求|$\overrightarrow{a}$-2$\overrightarrow{b}$|的值;
(2)设向量$\overrightarrow{p}$=$\overrightarrow{a}$+2$\overrightarrow{b}$,$\overrightarrow{q}$=$\overrightarrow{a}$-2$\overrightarrow{b}$,求向量$\overrightarrow{p}$在$\overrightarrow{q}$方向上的投影.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,四棱锥V-ABCD中,底面ABCD是边长为2的正方形,其它四个侧面都是侧棱长为$\sqrt{5}$的等腰三角形,E、F分别为AB、VC的中点.
(1)求证:EF∥平面VAD;
(2)求二面角V-AB-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.数列{an}中,a1=4,an+1=an+5,那么这个数列的通项公式是an=5n-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.直线l的倾角为45°,且过点(0,-1),则直线l的方程是(  )
A.x-y+1=0B.x-y-1=0C.x+y-1=0D.x+y+1=0

查看答案和解析>>

同步练习册答案