| A. | $\frac{2}{h}$=$\frac{1}{R}$+$\frac{1}{r}$ | B. | $\frac{1}{h}$=$\frac{1}{R}$+$\frac{1}{r}$ | C. | $\frac{1}{r}$=$\frac{1}{R}$+$\frac{1}{h}$ | D. | $\frac{2}{R}$=$\frac{1}{r}$+$\frac{1}{h}$ |
分析 根据圆的面积公式分别求出圆台的上、下底面面积,再由侧面面积等于两底面面积之和,利用圆的侧面积公式加以计算,可得出圆台的母线长,即可得出结论.
解答 解:设圆台的母线长为l,根据题意可得圆台的上底面面积为S上=πr2,圆台的下底面面积为S下=πR2,
∵圆台的侧面面积等于两底面面积之和,
∴侧面积S侧=π(r2+R2)=π(r+R)l,解之得l=$\frac{{r}^{2}+{R}^{2}}{r+R}$
∵l=$\sqrt{{h}^{2}+(R-r)^{2}}$
∴$\frac{{r}^{2}+{R}^{2}}{r+R}$=$\sqrt{{h}^{2}+(R-r)^{2}}$,
∴($\frac{{r}^{2}+{R}^{2}}{r+R}$)2=h2+(R-r)2
∴$\frac{2}{h}$=$\frac{1}{R}$+$\frac{1}{r}$.
故选:A.
点评 本题给出圆台的侧面面积等于两底面面积之和,求母线关于两底半径的表达式.考查了旋转体(圆柱、圆锥、圆台)侧面积的表面积,考查计算能力,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | $2\sqrt{3}$ | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 192 | B. | 182 | C. | -192 | D. | -182 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
| x | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
| y | 90 | 84 | 83 | 80 | 75 | 68 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com