精英家教网 > 高中数学 > 题目详情
17.如图,已知四棱锥P-ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,PA=AB=2,AD=4,M为侧棱PC的中点.
(1)求异面直线AM与PB所成角;
(2)求直线AM与平面BPC所成角的正弦值.

分析 (1)以A为原点,建立空间直角坐标系A-xyz,求出$\overrightarrow{AM}$,$\overrightarrow{PB}$的向量坐标,利用向量的数量积直接求解异面直线AM与PB所成角的大小.
(2)求出平面BPC的法向量,AM的向量,利用空间向量的数量积以及直线和平面所成角的定义进行求解即可.

解答 解:(1)如图所示,以A为原点,建立空间直角坐标系A-xyz,

则A(0,0,0),B(2,0,0),D(0,4,0),P(0,0,2),C(2,4,0),M(1,2,1),
∵$\overrightarrow{AM}$=(1,2,1),$\overrightarrow{PB}$=(2,0,-2),
∴$\overrightarrow{AM}$•$\overrightarrow{PB}$=(1,2,1)•(2,0,-2)=1×2-1×2=0,
∴$\overrightarrow{AM}$⊥$\overrightarrow{PB}$,则AM⊥PB,
∴异面直线AM与PD所成角为90°.
(2)设平面BPC的法向量为$\overrightarrow{m}$=(x,y,z),
∵$\overrightarrow{BC}=(0,4,0),\overrightarrow{BP}=(-2,0,2)$,并且$\overrightarrow{m}⊥\overrightarrow{BC},\overrightarrow{m}⊥\overrightarrow{BP}$,
∴$\left\{\begin{array}{l}4y=0\\-2x+2z=0\end{array}\right.$,令x=1得z=1,y=0,
∴平面MBD的一个法向量为$\overrightarrow{m}$=(1,0,1),
∵$\overrightarrow{AM}$=(1,2,1),
∴cos<$\overrightarrow{AM}$,$\overrightarrow{m}$>=$\frac{\overrightarrow{AM}•\overrightarrow{m}}{|\overrightarrow{AM}||\overrightarrow{m}|}$=$\frac{2}{\sqrt{2}•\sqrt{6}}$=$\frac{\sqrt{3}}{3}$,
设直线AM与平面BPC所成角为θ,θ∈(0,$\frac{π}{2}$),
则sinθ=|cos<$\overrightarrow{AM}$,$\overrightarrow{m}$>|=$\frac{\sqrt{3}}{3}$,
∴直线AM与平面BPC所成角的正弦值$\frac{\sqrt{3}}{3}$.

点评 本题考查空间异面直线所成角以及直线和平面所成角的大小的计算,建立坐标系,利用向量法以及向量的数量积是解决本题的关键.考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.在独立性检验中,随机变量K2有两个临界值:3.841和6.635;当K2>3.841时,有95%的把握说明两个事件有关,当K2>6.635时,有99%的把握说明两个事件有关,当K2≤3.841时,认为两个事件无关,在一项打鼾与患心脏病的调查中,共调查了2 000人,经计算得k=20.87,根据这一数据分析(  )
A.在犯错误的概率不超过0.05的前提下,认为打鼾与患心脏病有关
B.约有95%的打鼾者患心脏病
C.在犯错误的概率不超过0.01的前提下,认为打鼾与患心脏病有关
D.约有99%的打鼾者患心脏病

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.一个圆台上、下底面半径分别为r、R,高为h,若其侧面积等于两底面面积之和,则下列关系正确的是(  )
A.$\frac{2}{h}$=$\frac{1}{R}$+$\frac{1}{r}$B.$\frac{1}{h}$=$\frac{1}{R}$+$\frac{1}{r}$C.$\frac{1}{r}$=$\frac{1}{R}$+$\frac{1}{h}$D.$\frac{2}{R}$=$\frac{1}{r}$+$\frac{1}{h}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),F1(-c,0)是左焦点,圆x2+y2=c2与双曲线左支的一个交点是P,若直线PF1与双曲线右支有交点,则双曲线的离心率的取值范围是($\sqrt{5}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.当太阳光线与水平面的倾斜角为60°时,要使一根长为a的细杆的影子最长,则细杆与水平地面所成的角为(  )
A.15°B.30°C.45°D.60°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,AB、CD是⊙O的两条弦,且AB是线段CD的中垂线,已知AB=6,CD=2$\sqrt{5}$,则线段AC的长度为(  )
A.5B.$\sqrt{35}$C.$\sqrt{30}$D.3$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)=ex+sinx在(0,f(0))处的切线方程为y=2x+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.(普通高中)已知关于x的二项式(x+$\frac{a}{\sqrt{x}}$)6展开式的常数项为15,则a=(  )
A.1B.±1C.2D.±2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.数列{an}中,a1=4,an+1=an+5,那么这个数列的通项公式是an=5n-1.

查看答案和解析>>

同步练习册答案