精英家教网 > 高中数学 > 题目详情
5.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),F1(-c,0)是左焦点,圆x2+y2=c2与双曲线左支的一个交点是P,若直线PF1与双曲线右支有交点,则双曲线的离心率的取值范围是($\sqrt{5}$,+∞).

分析 设直线PF的方程为y=k(x+c),由直线和圆相交,可得k不为0,求得圆和双曲线的交点P,运用两点的斜率公式,由题意可得k<$\frac{b}{a}$,解不等式可得b>2a,结合离心率公式计算即可得到所求范围.

解答 解:设直线PF1的方程为y=k(x+c),即kx-y+kc=0,
由直线和圆有交点,可得$\frac{|kc|}{\sqrt{1+{k}^{2}}}$<c,
解得k≠0.
联立圆x2+y2=c2与双曲线方程$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1,
解得交点P,设为(-$\frac{a}{c}$$\sqrt{{b}^{2}+{c}^{2}}$,$\frac{{b}^{2}}{c}$).
可得k=$\frac{\frac{{b}^{2}}{c}}{-\frac{a\sqrt{{b}^{2}+{c}^{2}}}{c}+c}$>0,
由题意可得k<$\frac{b}{a}$,
结合a2+b2=c2
a$\sqrt{{b}^{2}+{c}^{2}}$<c2-ab,
化简可得b>2a,即有b2>4a2
可得c2>5a2
即有e=$\frac{c}{a}$>$\sqrt{5}$.
故答案为:($\sqrt{5}$,+∞)

点评 本题考查双曲线的离心率的范围,注意运用直线和圆相交的条件:d<r,考查联立圆方程和双曲线的方程求得交点,运用直线PF的斜率小于渐近线的斜率是解题的关键,综合性较强,有一定的难度.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.如图,在三棱柱ABC-A1B1C1中,A1B⊥平面ABC,AB⊥AC,且AB=AC=A1B=1.
(1)求棱AA1与BC所成的角的大小;
(2)在棱B1C1上确定一点P,使二面角P-AB-A1的平面角的余弦值为$\frac{{2\sqrt{5}}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x2+13x+36.
(Ⅰ)求h(x)=$\frac{1}{{\sqrt{f(x)}}}$的定义域;
(Ⅱ)对任意x>0,$\frac{f(x)}{x}$>m恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设a为函数y=2sinx(x∈R)的最大值,则二项式(a$\sqrt{x}$-$\frac{1}{\sqrt{x}}$)6的展开式中含x2项的系数是(  )
A.192B.182C.-192D.-182

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知数列{an}满足an+1=2+an(n∈N*),a2=3a5,其前n项和为Sn,若对于任意的n∈N*,总有Sn≥Sk成立,则|ak|+|ak+1|+…+|a15|=82.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某工厂制造一批无盖长方体容器,已知每个容器的容积都是9立方米,底面都是一边长为2米,另一边长为x米的长方形,如果制造底面的材料费用为2a元/平方米,制造侧面的材料费用为a元/平方米,设计时材料的厚度忽略不计.
(1)试将制造每个容器的成本y(单位:元)表示成底面边长x(单位:米)的函数;
(2)如何设计容器的底面边长x(单位:米)的尺寸,使其成本最低?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,已知四棱锥P-ABCD中,底面ABCD为矩形,侧棱PA⊥底面ABCD,PA=AB=2,AD=4,M为侧棱PC的中点.
(1)求异面直线AM与PB所成角;
(2)求直线AM与平面BPC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.甲盒子里装有分别标有数字1,2,4,7的4张卡片,乙盒子里装有分别标有数字1,4的2张卡片.若从两个盒子中各随机的摸取出1张卡片,则2张卡片上的数字之积为偶数的概率为(  )
A.$\frac{7}{8}$B.$\frac{3}{4}$C.$\frac{1}{4}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知x10=a0+a1(x-1)+a2(x-1)2+…+a10•(x-1)10
(1)求a0+a1+a2+…+a10的值;
(2)若x10-3=f(x)(x-1)2+ax+b,其中f(x)是关于x的多顶式,求a,b的值.

查看答案和解析>>

同步练习册答案