精英家教网 > 高中数学 > 题目详情
10.某工厂制造一批无盖长方体容器,已知每个容器的容积都是9立方米,底面都是一边长为2米,另一边长为x米的长方形,如果制造底面的材料费用为2a元/平方米,制造侧面的材料费用为a元/平方米,设计时材料的厚度忽略不计.
(1)试将制造每个容器的成本y(单位:元)表示成底面边长x(单位:米)的函数;
(2)如何设计容器的底面边长x(单位:米)的尺寸,使其成本最低?

分析 (1)设长方体容器的高为h(h>0),依据题意知2xh=9,所以h=$\frac{9}{2x}$,从而写出该容器成本y(单位:元)表示成底面边长x(单位:米)的函数;
(2)利用基本不等式,即可得到所求的最值和对应的x的值.

解答 解:(1)设长方体容器的高为h(h>0),依据题意知2xh=9,所以h=$\frac{9}{2x}$,-------------3分
容器的侧面积为4h+2xh,容器底面积为2x,
所以y=4ax+a(4h+2xh)=2a(2x+$\frac{9}{x}$)+9a(x>0)-----------------------8分
(2)令f(x)=2x+$\frac{9}{x}$(x>0),所以2x+$\frac{9}{x}$≥6$\sqrt{2}$,-------------------------------------------10分
当且仅当2x=$\frac{9}{x}$,即x=$\frac{3\sqrt{2}}{2}$时,函数取得最小值.-------------------------------------------12分
答:当容器底面边长为$\frac{3\sqrt{2}}{2}$米时,其成本最低.-------------------------------------------14分

点评 本题考查了基本不等式在实际问题中的应用,考查数学建模思想的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.如图是调查某地区男女中学生是否喜欢理科的等高条形图,从如图可以看出该地区的中学生(  )
A.性别与是否喜欢理科无关B.女生中喜欢理科的比为80%
C.男生比女生喜欢理科的可能性大D.男生中喜欢理科的比例为80%

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知正四棱锥的底面边长是3,高为$\frac{{\sqrt{17}}}{2}$,这个正四棱锥的侧面积是$3\sqrt{26}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,直三棱柱ABC-A1B1C1的各条棱长均为4,D是侧棱CC1的中点.
(Ⅰ)在线段AB1上是否存在一点M,使得DM∥平面ABC,若存在,求出AM的长.若不存在,请说明理由;
(Ⅱ)求AB1与平面ACC1A1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),F1(-c,0)是左焦点,圆x2+y2=c2与双曲线左支的一个交点是P,若直线PF1与双曲线右支有交点,则双曲线的离心率的取值范围是($\sqrt{5}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,某隧道的截面图由矩形ABCD和抛物线型拱顶DEC组成(E为拱顶DEC的最高点),以AB所在直线为x轴,以AB的中点为坐标原点,建立平面直角坐标系xOy,已知拱顶DEC的方程为y=-$\frac{1}{4}$x2+6(-4≤x≤4).
(1)求tan∠AEB的值;
(2)现欲在拱顶上某点P处安装一个交通信息采集装置,为了获得最佳采集效果,需要点P对隧道底AB的张角∠APB最大,求此时点P到AB的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,AB、CD是⊙O的两条弦,且AB是线段CD的中垂线,已知AB=6,CD=2$\sqrt{5}$,则线段AC的长度为(  )
A.5B.$\sqrt{35}$C.$\sqrt{30}$D.3$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,平行四边形ABCD中,点E在AB上且EB=2AE,AC与DE交于F点,求△ADF与△AFE的面积之比S△ADF:S△AFE

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若x=8,y=18,则$\frac{x+y}{\sqrt{x}-\sqrt{y}}$-$\frac{2xy}{x\sqrt{y}-y\sqrt{x}}$的值为(  )
A.-$\sqrt{2}$B.4C.$\sqrt{3}$D.9$\sqrt{3}$

查看答案和解析>>

同步练习册答案