分析 (Ⅰ)取AB,AB1的中点分别为N,M,连接NM,NC,证明四边形NMDC是平行四边形,即可;
(Ⅱ)根据线面角的定义作出直线和平面所成角的平面角,根据三角形的边角关系进行求解即可.
解答
解:(Ⅰ)在线段AB1上存在一点M,使得DM∥平面ABC,
如图,取AB,AB1的中点分别为N,M,连接NM,NC,
则NM∥BB1∥DC.且NM=$\frac{1}{2}$BB1=DC,
∴四边形NMDC是平行四边形,
∴MD∥NC,
∵NC?平面ABC,MD?平面ABC,
∴DM∥平面ABC,此时AM=$\frac{1}{2}$AB1=2$\sqrt{2}$,
(Ⅱ)取A1C1的中点E,连接B1E,
∴B1E⊥A1C1,
∵AA1⊥平面A1B1C1,
∴AA1⊥B1E,
又AA1∩A1C1=A1,
∴B1E⊥平面ACC1A1,
连接AE,则AE是AB1在平面ACC1A1内的射影,
∴∠B1AE是AB1与平面ACC1A1所成的角,
在直角三角形B1AE中,B1E=2$\sqrt{3}$,AB1=4$\sqrt{2}$,
则sin∠B1AE=$\frac{{B}_{1}E}{A{B}_{1}}=\frac{2\sqrt{3}}{4\sqrt{2}}$=$\frac{\sqrt{6}}{4}$,
即AB1与平面ACC1A1所成角的正弦值$\frac{\sqrt{6}}{4}$.
点评 本题主要考查线面平行的定理的应用以及直线和平面所成角的求解,利用相应的判定定理以及线面角的定义作出平面角是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}<a<1$ | B. | $\frac{1}{2}≤a<1$ | C. | 1<a≤2 | D. | 1<a<2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| x | 1 | 2 | 3 | 4 | 5 | 6 |
| f(x) | -36 | -15 | -3 | 10 | -32 | -52 |
| A. | (1,2)和(2,3) | B. | (2,3)和(3,4) | C. | (3,4)和(4,5) | D. | (4,5)和(5,6) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 192 | B. | 182 | C. | -192 | D. | -182 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若a∥α,b∥α,则a∥b | B. | 若a∥α,α∥β,则a∥β | C. | 若a⊥c,b⊥c,则a∥b | D. | 若a⊥α,b⊥α,则a∥b |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com