精英家教网 > 高中数学 > 题目详情
在数列{an}中,a1=3,an+1=an+ln(1+
1
n
),则an=(  )
A、3+lnn
B、3+(n-1)lnn
C、3+nlnn
D、1+n+lnn
考点:数列递推式
专题:等差数列与等比数列
分析:把递推式整理,先整理对数的真数,通分变成
n+1
n
,用迭代法整理出结果,约分后选出正确选项.
解答: 解:∵a1=3,an+1=an+ln(1+
1
n
)=an+ln
n+1
n

∴a2=a1+ln2,a3=a2+ln
3
2

a4=a3+ln
4
3

…,
an=an-1+ln
n
n-1

累加可得:an=3+ln2+ln
3
2
+ln
4
3
+…+ln
n
n-1
=3+lnn,
故选:A
点评:数列的通项an或前n项和Sn中的n通常是对任意n∈N成立,因此可将其中的n换成n+1或n-1等,这种办法通常称迭代或递推.了解数列的递推公式,明确递推公式与通项公式的异同;会根据数列的递推公式写出数列的前几项.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

直角坐标系下的(1,1)化成极坐标系下的坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sin(α-
π
4
)=
3
5
,α∈(
π
3
4
),求
1+sinα-cos2α
tanα
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

关于直线m、n与平面α、β,有下列四个命题:
①m∥α,n∥β且α∥β,则m∥n;    
②m⊥α,n⊥β且α⊥β,则m⊥n;
③m⊥α,n∥β且α∥β,则m⊥n;   
④m∥α,n⊥β且α⊥β,则m∥n.
其中正确命题的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三条边AB,AC,BC的中点的坐标分别是(2,1),(-3,4),(-2,1),则△ABC的重心的坐标为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=sinα+
3
cosα,其中角α的顶点与坐标原点重合,始边与x轴非负半轴重合,终边经过点P(x,y),且0≤α≤π.
(1)若P点的坐标为(
3
,1)求f(a)的值;
(2)若点P(x,y)为平面区域
x+y≥1
y≥
3
3
x
y≤1
上的一个动点,试确定角α的取值范围,并求函数f(a)的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=3sin(2x-
π
3
)的单调递减区间是(  )
A、[kπ-
π
6
,kπ+
π
3
],k∈Z
B、[kπ+
π
3
,kπ+
6
],k∈Z
C、[kπ-
π
12
,kπ+
12
],k∈Z
D、[kπ+
12
,kπ+
11π
12
],k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an},当n≥2时满足1-Sn=an-1-an
(1)求该数列的通项公式;
(2)令bn=(n+1)an,求数列{an}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=kax-a-x(a>0且a≠1)是奇函数.
(1)求常数k的值;
(2)若a>1,试判断函数f(x)的单调性,并加以证明;
(3)若已知f(1)=
8
3
,且函数g(x)=a2x+a-2x-2mf(x)在区间[1,+∞)上的最小值为-2,求实数m的值.

查看答案和解析>>

同步练习册答案