精英家教网 > 高中数学 > 题目详情
20.当α∈($\frac{π}{2}$,$\frac{3π}{4}$)时,方程x2sinα-y2cosα=1表示的曲线是(  )
A.焦点在x轴上的椭圆B.焦点在y轴上的椭圆
C.焦点在x轴上的双曲线D.焦点在y轴上的双曲线

分析 判断三角函数的符号、范围,即可判断曲线的形状.

解答 解:α∈($\frac{π}{2}$,$\frac{3π}{4}$)时,sinα∈($\frac{\sqrt{2}}{2}$,1),cosα∈(-$\frac{\sqrt{2}}{2}$,0),
可得方程x2sinα-y2cosα=1表示的曲线是焦点在y轴上的椭圆.
故选:B.

点评 本题考查椭圆的简单性质的应用,三角函数符号的判断,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.在四棱锥P-ABCD中,底面ABCD是一直角梯形,BA⊥AD,AD∥BC,BC=1,PA=3,AD=4,PA⊥底面ABCD,E是PD上一点,且CE∥平面PAB,则点E到平面ABCD的距离为$\frac{9}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知$α∈({0,\frac{π}{2}})$,$β∈({\frac{π}{2},π})$,$cosβ=-\frac{1}{3}$,$sin({α+β})=\frac{{4-\sqrt{2}}}{6}$.
( I)求tan2β的值;
( II)求α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设P={x|x<1},Q={x|x2<1},则(  )
A.P⊆QB.Q⊆PC.P⊆∁RQD.Q⊆∁RP

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知抛物线的标准方程为x2=8y,则抛物线的准线方程为(  )
A.x=2B.x=-2C.y=2D.y=-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若等比数列{an}的前n项和Sn满足Sn=a-($\frac{1}{2}$)n-1,则直线(a-1)x-y+3=0与圆(x-a)2+y2=12的位置关系为(  )
A.相离B.相切C.相交D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在四面体S-ABC中,若$SA=CB=\sqrt{5}$,$SB=AC=\sqrt{10}$,$SC=AB=\sqrt{13}$,则这个四面体的外接球的表面积为14π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知三棱锥S-ABC,其三视图中的正(主)视图和侧(左)视图如图所示,则该三棱锥的体积为(  )
A.$\frac{{8\sqrt{3}}}{3}$B.$\frac{{16\sqrt{3}}}{3}$C.$\frac{{32\sqrt{3}}}{3}$D.$16\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知等差数列{an}的前n项和为Sn,若$\frac{{a}_{5}}{{a}_{3}}$=$\frac{5}{9}$,则$\frac{{S}_{9}}{{S}_{5}}$=(  )
A.$\frac{9}{5}$B.1C.$\frac{3}{5}$D.$\frac{5}{9}$

查看答案和解析>>

同步练习册答案