精英家教网 > 高中数学 > 题目详情

设数列{ xn}满足数学公式,且x1+x2+…+x100=100,x101+x102+…+x200的值为


  1. A.
    100a
  2. B.
    101a2
  3. C.
    101a100
  4. D.
    100a100
D
分析:先根据递推公式和对数的运算性质,证明出数列是一个等比数列,再由等比数列的性质和数列前100项的和求出式子的值.
解答:∵logaxn+1=1+logaxn,∴logaxn+1-logaxn=1,
=1,则=a,
∴数列{xn}是以a为公比的等比数列,
∵x1+x2+…+x100=100,∴x101+x102+…+x200=a100x1+a100x2+…a100x100
=a100(x1+x2+…+x100)=100a100
故选D.
点评:本题考查了等比数列数列的性质,以及等比数列求和,利用对数的运算性质进行证明,一般来说只要数列求和,应先研究数列的性质再进行求和.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列xn满足log2xn+1=1+log2xn(n∈N*),且x1+x2+…+x10=10,记xn的前n项和为Sn,则S20=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)定义如下表,数列{xn}满足x0=5,且对任意自然数均有xn+1=f(xn),则x2004的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C:f(x)=x2,C上的点A0,An的横坐标分别为1和an(n∈N*),且a1=5,数列{xn}满足xn+1=t•f(xn-1)+1(t>0且t≠
1
2
,t≠1)
,设区间Dn=[1,an](an>1),当x∈Dn时,曲线C上存在点Pn(xn,f(xn)),使得点Pn处的切线与直线A0An平行.
(1)证明:{logt(xn-1)+1}是等比数列;
(2)当Dn+1?Dn对一切n∈N*恒成立时,求t的取值范围;
(3)记数列{an}的前n项和为Sn,当t=
1
4
时,试比较Sn与n+7的大小,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{xn}中,x1,x5是方程log22x-8log2x+12=0的两根,等差数列{yn}满足yn=log2xn,且其公差为负数,
(1)求数列{yn}的通项公式;
(2)证明:数列{xn}为等比数列;
(3)设数列{xn}的前n项和为Sn,若对一切正整数n,Sn<a恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{xn}满足:x1=1且xn+1=
xn+4
xn+1
,n∈N*

(1)计算x2,x3,x4的值;
(2)试比较xn与2的大小关系;
(3)设an=|xn-2|,Sn为数列{an}前n项和,求证:当n≥2时,Sn≤2-
2
2n

查看答案和解析>>

同步练习册答案