精英家教网 > 高中数学 > 题目详情
精英家教网如图,已知椭圆C:
x2
16
+
y2
12
=1
的左、右顶点分别为A、B,右焦点为F,直线l为椭圆的右准线,N为l上一动点,且在x轴上方,直线AN与椭圆交于点M.
(1)若AM=MN,求∠AMB的余弦值;
(2)设过A,F,N三点的圆与y轴交于P,Q两点,当线段PQ的中点坐标为(0,9)时,求这个圆的方程.
分析:(1)根据统一可知直线l的方程,设N(8,t)(t>0),因为AM=MN,所以M(2,
t
2
),由M在椭圆上,得t=6.可求出点M的坐标,求出向量
MA
MB
,然后利用向量的夹角公式进行求解即可;
(2)设圆的方程为x2+y2+Dx+Ey+F=0,将A,F,N三点坐标代入,即可求出圆的方程,令x=0,得y2-(t+
72
t
)y-8=0
,最后根据线段PQ的中点坐标为(0,9),t+
72
t
=18
求出t,从而求出圆的方程.
解答:解:(1)由已知,A(-4,0),B(4,0),F(2,0),直线l的方程为x=8.
设N(8,t)(t>0),因为AM=MN,所以M(2,
t
2
).
由M在椭圆上,得t=6.故所求的点M的坐标为M(2,3).(4分)
所以
MA
=(-6,-3),
MB
=(2,-3)
MA
MB
=-12+9=-3
cos∠AMB=
MA
MB
|
MA
||
MB
|
=
-3
36+9
4+9
=-
65
65
.(7分)
(2)设圆的方程为x2+y2+Dx+Ey+F=0,将A,F,N三点坐标代入,
16-4D+F=0
4+2D+F=0
64+t2+8D+Et+F=0
?
D=2
E=-t-
72
t
F=-8.

∵圆方程为x2+y2+2x-(t+
72
t
)y-8=0
,令x=0,得y2-(t+
72
t
)y-8=0
.(11分)
设P(0,y1),Q(0,y2),则y1、2=
t+
72
t
±
(t+
72
t
)2+32
2

由线段PQ的中点坐标为(0,9),得y1+y2=18,t+
72
t
=18

此时所求圆的方程为x2+y2+2x-18y-8=0.(15分)
点评:本题主要考查了椭圆的性质以及利用向量法求夹角,同时考查了圆的方程,分析问题解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的焦点和上顶点分别为F1、F2、B,我们称△F1BF2为椭圆C的特征三角形.如果两个椭圆的特征三角形是相似的,则称这两个椭圆是“相似椭圆”,且三角形的相似比即为椭圆的相似比.
(1)已知椭圆C1
x2
4
+y2=1和C2
x2
16
+
y2
4
=1,判断C2与C1是否相似,如果相似则求出C2与C1的相似比,若不相似请说明理由;
(2)已知直线l:y=x+1,在椭圆Cb上是否存在两点M、N关于直线l对称,若存在,则求出函数f(b)=|MN|的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆C:
x2
a2
+
y2
b2
=1的离心率为
3
2
,过椭圆C上一点P(2,1)作倾斜角互补的两条直线,分别与椭圆交于点A、B,直线AB与x轴交于点M,与y轴负半轴交于点N.
(Ⅰ)求椭圆C的方程:
(Ⅱ)若S△PMN=
3
2
,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知椭圆C:
x2
36
+
y2
20
=1的左顶点,右焦点分别为A,F,右准线为l,N为l上一点,且在x轴上方,AN与椭圆交于点M.
(1)若AM=MN,求证:AM⊥MF;
(2)过A,F,N三点的圆与y轴交于P,Q两点,求PQ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)如图,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
3
2
,以椭圆C的左顶点T为圆心作圆T:(x+2)2+y2=r2(r>0),设圆T与椭圆C交于点M与点N.
(1)求椭圆C的方程;
(2)求
TM
TN
的最小值,并求此时圆T的方程;
(3)设点P是椭圆C上异于M,N的任意一点,且直线MP,NP分别与x轴交于点R,S,O为坐标原点,求证:|OR|•|OS|为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的左顶点,右焦点分别为A、F,右准线为m.圆D:x2+y2+x-3y-2=0.
(1)若圆D过A、F两点,求椭圆C的方程;
(2)若直线m上不存在点Q,使△AFQ为等腰三角形,求椭圆离心率的取值范围.
(3)在(1)的条件下,若直线m与x轴的交点为K,将直线l绕K顺时针旋转
π
4
得直线l,动点P在直线l上,过P作圆D的两条切线,切点分别为M、N,求弦长MN的最小值.

查看答案和解析>>

同步练习册答案