精英家教网 > 高中数学 > 题目详情

已知函数数学公式
(1)当数学公式时,求函数h(x)=f(x)-g(x)的单调区间;
(2)若b=2且h(x)=f(x)-g(x)存在单调递减区间,求a的取值范围;
(3)当a≠0时,设函数f(x)的图象C1与函数g(x)的图象C2交于点P、Q,过线段PQ的中点R作x轴的垂线分别交C1、C2于点M,N,则是否存在点R,使C1在点M处的切线与C2在点N处的切线平行?如果存在,请求出R的横坐标,如果不存在,请说明理由.

解:(1)当时,

∵h(x)的定义域为(0,+∞),令h'(x)=0,得x=1
∴当0<x<1时,h'(x)>0,h(x)在(0,1)上是单调递增;
当x>1时,h'(x)<0,h(x)在(1,+∞)上是单调递减;
所以,函数h(x)=f(x)-g(x)的单调递增区间为(0,1);单调递减区间为(1,+∞).
(2)b=2时,

因为函数h(x)存在单调递减区间,
所以h′(x)<0有解.
即当x>0时,则ax2+2x-1>0在(0,+∞)上有解.
①当a=0时,y=2x-1为单调递增的一次函数,y=2x-1>0在(0,+∞)总有解.
②当a>0时,y=ax2+2x-1为开口向上的抛物线,y=ax2+2x-1>0在(0,+∞)总有解.
③当a<0时,y=ax2+2x-1为开口向下的抛物线,而y=ax2+2x-1>0在(0,+∞)总有解,
则△=4+4a>0,且方程y=ax2+2x-1=0至少有一个正根,
此时,-1<a<0
综上所述,a的取值范围为(-1,+∞)
(3)证:设点P、Q的坐标是(x1,y1),(x2,y2),0<x1<x2
则点M,N的横坐标为
C1点在M处的切线斜率为
C2点N处的切线斜率为
假设C1点M处的切线与C2在点N处的切线平行,则k1=k2
,则

,则
.则
因为t>1时,F'(t)>0,
所以F(t)在[1,+∞)上单调递增.
故F(t)>F(1)=0
.这与①矛盾,假设不成立.
故C1在点M处的切线与C2在点N处的切线不平行.
分析:(1)将a、b的值代入,可得,求出其导数,再在区间(0,∞)上讨论导数的正负,可以得出函数h(x)单调区间;
(2)先求函数h(x)的解析式,因为函数h(x)存在单调递减区间,所以不等式h'(x)<0有解,通过讨论a的正负,得出h′(x)<0有解,即可得出a的取值范围;
(3)首先设点P、Q的坐标是(x1,y1),(x2,y2),0<x1<x2,然后通过导数公式以及导数的几何意义,分别求出曲线C1在点M处的切线斜率k1和曲线C2在点N处的切线斜率k2,因为两条切线平行,所以k1=k2,解关于x1,x2,a,b的方程,整理成,再令,转化为关于t的函数讨论问题,根据其单调性得出.这与①矛盾,因此假设不成立.可得C1在点M处的切线与C2在点N处的切线不平行.
点评:本题考查了利用导数研究函数的单调性、导数的几何意义,函数与方程的讨论等,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数

(1)当时,若,试求

(2)若函数在区间上是增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年海南省高考压轴卷文科数学试卷(解析版) 题型:解答题

(本小题满分10分)选修4-5:不等式选讲

已知函数

(1)当时,求函数的定义域;

(2)若关于的不等式的解集是,求的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2013届河北省高二下学期期中文科数学试卷(解析版) 题型:解答题

(本小题12分)已知函数

(1)当时,判断的单调性;

(2)若在其定义域内为增函数,求正实数的取值范围;

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年上海市宝山区高三上学期期末质量监测数学 题型:解答题

已知函数

    (1)当时,求满足的取值范围;

    (2)若的定义域为R,又是奇函数,求的解析式,判断其在R上的单调性并加以证明.

 

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年深圳市高三第一次调研考试数学理卷 题型:解答题

((本小题满分14分)

已知函数

(1)当时,如果函数仅有一个零点,求实数的取值范围;

(2)当时,试比较的大小;

(3)求证:).

 

查看答案和解析>>

同步练习册答案