精英家教网 > 高中数学 > 题目详情
(2008•奉贤区模拟)在直三棱柱ABC-A1B1C1中,已知AB=AC=AA1=4,∠BAC=90°,D为B1C1的中点,求异面直线AB1与CD所成角的大小.
分析:要求异面直线AB1与CD所成角,根据异面直线所成的角的定义,去BC中点E,连接B1E,易知B1E∥CD,找出异面直线所成的角,解△AB1E即可求得结果.
解答:解:取BC中点E,连接B1E,得B1ECD为平行四边形
∵B1E∥CD
∴∠AB1E为异面直线AB1与CD所成的角.
在△ABC中,BC=4
2

连接AE,在△AB1E中,AB1=4
2
,AE=2
2
,B1E=2
6

则cos∠AB1E=
AB12+B1E2-AE2
2•AB1B1E

=
32+24-8
2•4
2
•2
6
=
3
2

∴异面直线AB1与CD所成角的大小为30°.
点评:本题考查异面直线所成的角,通常采取平移的方法求解,中点连是常作辅助线,体现了转化的数学思想方法,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2008•奉贤区二模)已知数列{an}的前n项和为Sn,若Sn=2n-1,则a7=
64
64

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•奉贤区二模)函数f(x)=
x2+x-2
的定义域为
(-∞,-2]∪[1,+∞)
(-∞,-2]∪[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•奉贤区二模)函数f(x)=x(1-x),x∈(0,1)的最大值为
1
4
1
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•奉贤区一模)我们将具有下列性质的所有函数组成集合M:函数y=f(x)(x∈D),对任意x,y,
x+y
2
∈D
均满足f(
x+y
2
)≥
1
2
[f(x)+f(y)]
,当且仅当x=y时等号成立.
(1)若定义在(0,+∞)上的函数f(x)∈M,试比较f(3)+f(5)与2f(4)大小.
(2)设函数g(x)=-x2,求证:g(x)∈M.
(3)已知函数f(x)=log2x∈M.试利用此结论解决下列问题:若实数m、n满足2m+2n=1,求m+n的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•奉贤区一模)我们规定:对于任意实数A,若存在数列{an}和实数x(x≠0),使得A=a1+a2x+a3x2+…+anxn-1,则称数A可以表示成x进制形式,简记为:A=
.
x\~(a1)(a2)(a3)…(an-1)(an)
.如:A=
.
2\~(-1)(3)(-2)(1)
,则表示A是一个2进制形式的数,且A=-1+3×2+(-2)×22+1×23=5.
(1)已知m=(1-2x)(1+3x2)(其中x≠0)),试将m表示成x进制的简记形式.
(2)若数列{an}满足a1=2,ak+1=
1
1-ak
,k∈N*
bn=
.
2\~(a1)(a2)(a3)…(a3n-2)(a3n-1)(a3n)
(n∈N*).求证:bn=
2
7
8n-
2
7

(3)若常数t满足t≠0且t>-1,dn=
.
t\~(
C
1
n
)(
C
2
n
)(
C
3
n
)…(
C
n-1
n
)(
C
n
n
)
,求
lim
n→∞
dn
dn+1

查看答案和解析>>

同步练习册答案