(本小题满分12分) 已知向量
,![]()
⑴求函数
的最小正周期;
⑵若
,求函数
的单调递增区间.
(1)最小正周期
;(2)
的单调递增区间是
。
【解析】
试题分析:(1)根据降幂公式和和角公式,把f(x)化成正弦型函数再求最小正周期
(2)利用整体代换思想求原函数的单调增区间
解: ∵![]()
∴![]()
……2分
……3分
……4分
(1) ∵
,∴函数
的最小正周期
……5分
(2)∵
,令
,函数
的单调区间是
,
……6分
由
,![]()
得
,
……9分
取
,得
……10分
而
……11分
因此,当
时,函数
的单调递增区间是
……12分考点:本试题主要考查了三角函数的性质,要求熟练掌握正弦函数的性质,同时考查向量的数量积和整体代换思想.是三角函数和向量的交汇题型.属简单题。
点评:解决该试题的关键是将所求的函数关系式,结合向量的数量积公式化为单一三角函数,同时能利用周期公式得到周期,利用正弦函数的单调区间,整体代换得到所求解函数的单调增区间。
科目:高中数学 来源: 题型:
| ON |
| ON |
| 5 |
| OM |
| OT |
| M1M |
| N1N |
| OP |
| OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的
、
、
.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
![]()
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com