精英家教网 > 高中数学 > 题目详情
(2013•和平区二模)若关于x的不等式|x+2|+|x-3|≤|a-1|存在实数解,则实数a的取值范围是.
(-∞,-4]∪[6,+∞)
(-∞,-4]∪[6,+∞)
分析:令f(x)=|x+2|+|x-3|,依题意,|a-1|≥f(x)存在实数解?|a-1|≥f(x)min=5,解此不等式即可.
解答:解:令f(x)=|x+2|+|x-3|,
则令f(x)=|x+2|+|x-3|≥|x+2+3-x|=5,
依题意,不等式|x+2|+|x-3|≤|a-1|存在实数解?|a-1|≥f(x)存在实数解?|a-1|≥f(x)min=5,
∴a-1≥5或a-1≤-5,
∴a≥6或a≤-4.
∴实数a的取值范围是(-∞,-4]∪[6,+∞).
故答案为:(-∞,-4]∪[6,+∞).
点评:本题考查绝对值不等式,考查构造函数思想与等价转化思想的综合应用,考查函数的最值与解不等式的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•和平区二模)已知函数y=f(x),x∈R满足f(x+1)=f(x-1).且x∈[-1,1]时,f(x)=x2.则y=f(x)与y=log5x的图象的交点个数为
4
4
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•和平区二模)若i是虚数单位,则复数
1-
3
i
(
3
-i)
2
等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•和平区二模)阅读如图所示的程序框图,运行相应的程序,则输出的结果S的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•和平区二模)条件p:
1
x
<1
,条件q:
1
x
<x
则¬p是¬q的(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•和平区二模)已知函数y=Asin(ωx+φ)(A>0,ω>0),|φ|<π)的部分图象如图所示,则它的解析式为(  )

查看答案和解析>>

同步练习册答案