精英家教网 > 高中数学 > 题目详情
10.某班级数学兴趣小组为了研究人的脚的大小与身高的关系,随机抽测了20位同学,得到如下数据:
序号12345678910
身高x(厘米)192164172177176159171166182166
脚长y(码)48384043443740394639
序号11121314151617181920
身高x(厘米)169178167174168179165170162170
脚长y(码)43414043404438423941
(Ⅰ)请根据“序号为5的倍数”的几组数据,求出y关于x的线性回归方程
(Ⅱ)若“身高大于175厘米”为“高个”,“身高小于等于175厘米”的为“非高个”;“脚长大于42码”为“大码”,“脚长小于等于42码”的为“非大码”.请根据上表数据完成2×2列联表:并根据列联表中数据说明能有多大的可靠性认为脚的大小与身高之间有关系?
(Ⅲ)若按下面的方法从这20人中抽取1人来核查测量数据的误差:将一个标有1,2,3,4,5,6的正六面体骰子连续投掷两次,记朝上的两个数字的乘积为被抽取人的序号,求:抽到“无效序号(超过20号)”的概率.
附表及公式:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
$b=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}},a=\overline y-b\overline x$.

分析 (I)分别求出$\overline{x}$,$\overline{y}$的值,求出$\widehat{b}$,$\widehat{a}$的值,代入回归方程即可;
(II) 根据高个和大脚的描述,统计出大脚,高个,非大脚和非高个的数据,填入列联表,再在合计的部分填表;
(III)先计算出投掷两次出现情况的总数,再分计算抽到“无效序号(超过20号)”的情况数结合概率的计算公式即可求得抽到“无效序号(超过20号)”的概率.

解答 解:(Ⅰ)“序号为5的倍数”的几组数据:
x1=176,x2=166,x3=168,x4=170,
y1=44,y2=39,y3=40,y4=41,
则$\overline x=170,\overline y=41$,所以$b=\frac{1}{2},a=-44$,
从而y关于x的线性回归方程是$\hat y=\frac{1}{2}x-44$.  …(6分)
(Ⅱ)2×2列联表:

高 个非高个合计
大脚527
非大脚11213
合计61420
${k^2}=\frac{{20×{{(5×12-1×2)}^2}}}{6×14×7×13}≈8.802>7.879$,
有99.5%的把握认为:人的脚的大小与身高之间有关系.…(10分)
(Ⅲ)$P=\frac{6}{36}=\frac{1}{6}$.   …(12分)

点评 本题考查独立性检验,包括数据的统计,是一个中档题,本题在个别省份作为高考题目出现过,要引起同学们注意.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.如图,三棱锥P-ABC中,D是BC的中点,△PAB为等边三角形,△ABC为等腰直角三角形,AB=AC=4,且二面角P-AB-D的余弦值为$\frac{\sqrt{3}}{3}$.
(Ⅰ)求证:平面ABC⊥平面PBC;
(Ⅱ)若点M是线段AP上一动点,点N为线段AB的四等分点(靠近B点),求直线NM与平面PAD所成角的余弦值的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知直线l1:(m+2)x-y+5=0与l2:(m+3)x+(18+m)y+2=0垂直,则实数m的值为(  )
A.2或4B.1或4C.1或2D.-6或2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为e=$\frac{1}{2}$,过C1的左焦点F1的直线l:x-y+2=0,直线l被圆C2:(x-3)2+(y-3)2=r2(r>0)截得的弦长为2$\sqrt{2}$.
(Ⅰ)求椭圆C1的方程;
(Ⅱ)设C1的右焦点为F2,在圆C2上是否存在点P,满足|PF1|=$\frac{a}{b}$|PF2|,若存在,指出有几个这样的点(不必求出点的坐标);若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点分别为F1,F2,过F2作一条直线(不与x轴垂直)与椭圆交于A,B两点,如果△ABF1恰好为等腰直角三角形,该直线的斜率为(  )
A.±1B.±2C.$±\sqrt{2}$D.$±\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.用系统抽样法从200名学生中抽取容量为20的样本,现将200名学生随机地从1~200编号,按编号顺序平均分成20组(1~10号,11~20号,…,191~200号),若前3组抽出的号码之和为39,则抽到的2组的号码是13.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.北宋数学家沈括的主要数学成就之一为隙积术,所谓隙积,即“积之有隙”者,如累棋、层坛之类,这种长方台形状的物体垛积.设隙积共n层,上底由长为a个物体,宽为b个物体组成,以下各层的长、宽依次各增加一个物体,最下层成为长为c个物体,宽为d个物体组成,沈括给出求隙积中物体总数的公式为S=$\frac{n}{6}[{({2b+d})a+({b+2d})c}]+\frac{n}{6}({c-a})$.已知由若干个相同小球粘黏组成的几何体垛积的三视图如图所示,则该垛积中所有小球的个数为85.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设A={x|x2-4x-5=0},B={x|x2=1},则A∪B=(  )
A.{-1,1,5}B.{-1,5}C.{1,5}D.{-1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知扇形的圆心角为α(α>0),半径为R.
(1)若α=60°,R=10cm,求圆心角α所对的弧长.
(2)若扇形的周长是8cm,面积是4cm2,求α和R.

查看答案和解析>>

同步练习册答案