精英家教网 > 高中数学 > 题目详情
已知函数
(1)若函数在点处的切线方程为,求的值;
(2)若,函数在区间内有唯一零点,求的取值范围;
(3)若对任意的,均有,求的取值范围.
(1);(2);(3).

试题分析:本题考查导数的运算,利用导数求切线方程、判断函数的单调性、求函数的最值等基础知识,考查函数思想、分类讨论思想,考查综合分析和解决问题的能力.第一问,利用导数求切线方程,先求导,将切点的横坐标代入到导数中,得到切线的斜率,再求即切点的纵坐标,直接利用点斜式写出切线方程;第二问,先将代入得到解析式,求导数,判断函数的单调性,因为有唯一的零点,所以,所以解得;第三问,属于恒成立问题,通过分析题意,可以转化为上的最大值与最小值之差,因为,所以讨论的正负来判断的正负,当时,为单调函数,所以,当时,需列表判断函数的单调性和极值来决定最值的位置,这种情况中还需要讨论与1的大小.
试题解析:(1) ,所以,得.      2分
,所以,得.      3分
(2) 因为所以 .      4分
时,,当时,
所以上单调递减,在上单调递增                  5分
,可知在区间内有唯一零点等价于
,                             .      7分
.                                    8分
(3)若对任意的,均有,等价于
上的最大值与最小值之差                 10分
(ⅰ) 当时,在上单调递增,
,得
所以                                   9分
(ⅱ)当时,由


所以,同理        .      10分
 当,即时,,与题设矛盾;   11分
 当,即时,恒成立;     12分
 当,即时,恒成立;      13分
综上所述,的取值范围为.                         14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

时下,网校教学越来越受到广大学生的喜爱,它已经成为学生们课外学习的一种趋势,假设某网校的套题每日的销售量(单位:千套)与销售价格(单位:元/套)满足的关系式,其中为常数.已知销售价格为4元/套时,每日可售出套题21千套.
(1)求的值;
(2)假设网校的员工工资,办公等所有开销折合为每套题2元(只考虑销售出的套数),试确定销售价格的值,使网校每日销售套题所获得的利润最大.(保留1位小数点)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知向量,点A、B为函数的相邻两个零点,AB=π.
(1)求的值;
(2)若,求的值;
(3)求在区间上的单调递减区间.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数处取得极值,且曲线在点处的切线垂直于直线
(1)求的值;
(2)若函数,讨论的单调性.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,函数两点间的平均变化率是(  )
A.1B.C.2D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数,
,设函数,且函数的零点均在区间内,则的最小值为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数是定义域为的奇函数,且时,,则函数       个零点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义方程的实数根叫做函数的“新驻点”,若函数的“新驻点”分别为,则的大小关系为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若曲线在原点处的切线方程是,则实数         .

查看答案和解析>>

同步练习册答案