精英家教网 > 高中数学 > 题目详情
15.已知抛物线的顶点在原点,其准线过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的一个焦点,又若抛物线与双曲线相交于点A($\frac{3}{2}$,$\sqrt{6}$),B($\frac{3}{2}$,-$\sqrt{6}$),求此两曲线的方程.

分析 由抛物线与双曲线相交于点A($\frac{3}{2}$,$\sqrt{6}$),B($\frac{3}{2}$,-$\sqrt{6}$),先求出抛物线方程为y2=4x,从而得到a2+b2=1,由此能求出双曲线的方程.

解答 解:由题意可设抛物线方程为y2=2px,p>0,
将$x=\frac{3}{2}$,y=$\sqrt{6}$代入得p=2,所求抛物线的方程为y2=4x,…(4分)
其准线方程为x=-1,即双曲线的半焦距c=1,∴a2+b2=1,①,
又$\frac{(\frac{3}{2})^{2}}{{a}^{2}}-\frac{6}{{b}^{2}}=1$,②,
由①②可得${a}^{2}=\frac{1}{4}$,b2=$\frac{3}{4}$,
所求双曲线的方程为4x2-$\frac{4}{3}{y}^{2}$=1.…(8分)

点评 本题考查抛物线方程和双曲线方程的求法,是基础题,解题时要认真审题,注意双曲线和抛物线的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.在锐角△ABC中,|BC|=1,∠B=2∠A,则$\frac{{|{AC}|}}{cosA}$=2;|AC|的取值范围为$(\sqrt{2},\sqrt{3})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各面中,面积最大的是(  )
A.8B.$4\sqrt{5}$C.12D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在等比数列{an}中,a1=3,a6=6,则a16等于(  )
A.6B.12C.24D.48

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图,在正方体ABCD-A1B1C1D1中,E为A1C1的中点,则异面直线CE与BD所成的角为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数f(x)=($\frac{1}{2}$)${\;}^{{x}^{2}-2x+6}$的单调递增区间是(-∞,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图所示,程序框图(算法流程图)的输出结果为9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知定义域为[1,2]的函数f(x)=2+logax(a>0,a≠1)的图象过点(2,3),若g(x)=f(x)+f(x2),则函数g(x)的值域为[4,$\frac{11}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知定义域为R的偶函数f(x)在(0,+∞)上为增函数,则(  )
A.f(4)>f(3)B.f(-5)>f(5)C.f(-3)>f(-5)D.f(3)>f(-6)

查看答案和解析>>

同步练习册答案