精英家教网 > 高中数学 > 题目详情
4.已知定义域为[1,2]的函数f(x)=2+logax(a>0,a≠1)的图象过点(2,3),若g(x)=f(x)+f(x2),则函数g(x)的值域为[4,$\frac{11}{2}$].

分析 根据f(x)的图象过点(2,3),代入可得实数a的值,再确定g(x)的定义域,最后根据单调性求函数值域.

解答 解:∵f(x)=2+logax的图象过点(2,3),
∴3=2+loga2,即loga2=1,解得a=2,
又∵g(x)=f(x)+f(x2)=4+3log2x,且f(x)的定义域为[1,2],
∴g(x)的自变量x需满足$\left\{\begin{array}{l}{1≤x≤2}\\{1≤x^2≤2}\end{array}\right.$,解得x∈[1,$\sqrt{2}$],
又g(x)在x∈[1,$\sqrt{2}$]上单调递增,
所以g(x)min=g(1)=4,g(x)max=g($\sqrt{2}$)=$\frac{11}{2}$,
因此,函数g(x)的值域为[4,$\frac{11}{2}$],
故填:[4,$\frac{11}{2}$].

点评 本题主要考查了函数解析式和定义域的求法,以及应用单调性求函数的值域,忽视g(x)的定义域是本题的易错点,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知△ABC的周长为20,且顶点B(-4,0),C(4,0),则顶点A的轨迹方程是(  )
A.$\frac{x^2}{36}+\frac{y^2}{20}$=1(y≠0)B.$\frac{x^2}{20}+\frac{y^2}{36}$=1(y≠0)
C.$\frac{x^2}{6}+\frac{y^2}{20}$=1(y≠0)D.$\frac{x^2}{20}+\frac{y^2}{6}$=1(y≠0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知抛物线的顶点在原点,其准线过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的一个焦点,又若抛物线与双曲线相交于点A($\frac{3}{2}$,$\sqrt{6}$),B($\frac{3}{2}$,-$\sqrt{6}$),求此两曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设F1、F2分别是椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦点,过原点的直线交椭圆于A、B两点,AF2⊥BF2,|AF2|=6,|BF2|=8,则椭圆C的方程为$\frac{{x}^{2}}{49}+\frac{{y}^{2}}{24}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知f(x)=$\frac{{2}^{x}+a}{{2}^{x}-1}$.
(1)求函数定义域;
(2)若f(x)为奇函数,求实数a的值;
(3)在(2)的条件下利用定义证明:f(x)在(0,+∞)为减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知$\overrightarrow a=(-3,2,5),\overrightarrow b=(1,5,-1),则\overrightarrow a•\overrightarrow b$=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知实数x,y满足约束条件$\left\{\begin{array}{l}x-y+1≥0\\ 4x+3y-12≤0\\ y-2≥0\end{array}\right.$,则$z=\frac{2x-y+1}{x+1}$的最大值为(  )
A.$\frac{5}{4}$B.$\frac{4}{5}$C.$\frac{9}{16}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某企业打算购买工作服和手套,市场价为每套工作服53元,每副手套3元,该企业联系了两家商店A和B,由于用货量大,这两家商店都给出了优惠条件:
商店A:买一赠一,买一套工作服,赠一副手套;
商店B:打折,按总价的95%收款.
该企业需要工作服75套,手套x副(x≥75),如果工作服与手套只能在一家购买,请你帮助老板选择在哪一家商店购买更省钱?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知直线l1:ax+y+3=0,l2:x+(2a-3)y=4,l1⊥l2,则a=1.

查看答案和解析>>

同步练习册答案