精英家教网 > 高中数学 > 题目详情
已知动点P与双曲线
x2
2
-
y2
3
=1
的两个焦点F1、F2的距离之和为6.
(1)求动点P的轨迹方程;
(2)若已知D(0,3),点M、N在动点P的轨迹上,且
DM
DN
,求实数λ的取值范围.
分析:(1)求出双曲线的焦点坐标,利用动点P与双曲线
x2
2
-
y2
3
=1
的两个焦点F1、F2的距离之和为6,可得动点P的轨迹是以F1、F2为焦点的椭圆,且a=3,c=
5
,从而可求动点P的轨迹方程;
(2)设N(s,t),M(x,y),利用
DM
DN
,求出坐标之间的关系,根据M,N在动点P的轨迹C上,消去一个参数,即可求实数λ的取值范围.
解答:解:(1)双曲线
x2
2
-
y2
3
=1
的两个焦点F1
5
,0),F2(-
5
,0).
∵动点P与双曲线
x2
2
-
y2
3
=1
的两个焦点F1、F2的距离之和为6,
∴动点P的轨迹是以F1、F2为焦点的椭圆,且a=3,c=
5

b=
a2-c2
=
5

∴动点P的轨迹方程为
x2
9
+
y2
4
=1

(2)设N(s,t),M(x,y),则
DM
DN

∴(x,y-3)=λ(s,t-3),
∴x=λs,y=3+λ(t-3),
∵M,N在动点P的轨迹C上,
s2
9
+
t2
4
=1
(λs)2
9
+
(λt+3-3t)2
4
=1

消去s可得
(λt+3-3λ)2-λ2t2
4
=1-λ2

解得t=
13λ-5

∵|t|≤2,
∴|
13λ-5
|≤2,
解得
1
5
≤λ≤5

∴实数λ的取值范围为[
1
5
,5
].
点评:本题考查双曲线、椭圆的标准方程,考查向量知识的运用,考查解不等式,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知动点P的轨迹方程为:
x2
4
-
y2
5
=1(x>2),O是坐标原点.
①若直线x-my-3=0截动点P的轨迹所得弦长为5,求实数m的值;
②设过P的轨迹上的点P的直线与该双曲线的两渐近线分别交于点P1、P2,且点P分有向线段
P1P2
所成的比为λ(λ>0),当λ∈[
3
4
3
2
]时,求|
OP1
|•|
OP2
|的最值.

查看答案和解析>>

科目:高中数学 来源:学习周报 数学 人教课标高二版(A选修1-1) 2009-2010学年 第18期 总第174期 人教课标版(A选修1-1) 题型:044

已知双曲线C以y=0为渐近线,且过点A(3,2).

(1)求双曲线C的标准方程;

(2)已知动点P与双曲线C的两个焦点所连线段长的和为6,求动点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源:学习周报 数学 人教课标版高二(A选修2-1) 2009-2010学年 第18期 总第174期 人教课标版(A选修2-1) 题型:044

已知双曲线C以y=0为渐近线,且过点A(3,2).

(1)求双曲线C的标准方程;

(2)已知动点P与双曲线C的两个焦点所连线段长的和为6,求动点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

设P(a,b)(b≠0)是平面直角坐标系xOy中的点,l是经过原点与点(1,b)的直线,记Q是直线l与抛物线x2=2pyp≠0)的异于原点的交点

⑴.已知a=1,b=2,p=2,求点Q的坐标。

⑵.已知点P(a,b)(ab≠0)在椭圆+y2=1上,p=,求证:点Q落在双曲线4x2-4y2=1上。

⑶.已知动点P(a,b)满足ab≠0,p=,若点Q始终落在一条关于x轴对称的抛物线上,试问动点P的轨迹落在哪种二次曲线上,并说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

(上海卷理20)设P(a,b)(b≠0)是平面直角坐标系xOy中的点,l是经过原点与点(1,b)的直线,记Q是直线l与抛物线x2=2pyp≠0)的异于原点的交点

⑴已知a=1,b=2,p=2,求点Q的坐标.

⑵已知点P(a,b)(ab≠0)在椭圆+y2=1上,p=,求证:点Q落在双曲线4x2-4y2=1上.

⑶已知动点P(a,b)满足ab≠0,p=,若点Q始终落在一条关于x轴对称的抛物线上,试问动点P的轨迹落在哪种二次曲线上,并说明理由.

查看答案和解析>>

同步练习册答案