精英家教网 > 高中数学 > 题目详情
已知二项式(
x
-
2
3x
)n
的展开式的二项式系数和为128.
(1)求n的值;
(2)求该二项展开式的各项的系数和;
(3)求该二项展开式的一次项.
考点:二项式系数的性质
专题:二项式定理
分析:(1)根据展开式的二项式系数和为2n=128,求得n的值.
(2)在二项式(
x
-
2
3x
)n
的展开式中,令x=1得,该二项展开式的各项系数和.
(3)先求出二项式展开式的通项公式,再令x的幂指数等于1,求得r的值,即可求得展开式中展开式的一次项
解答: 解:(1)由题意2n=128,∴n=7.
(2)在二项式(
x
-
2
3x
)n
的展开式中,令x=1得,该二项展开式的各项系数和(1-2)7=-1.
3)设该二项展开式的第r+1项为Tr+1,则Tr+1=
C
r
7
x
7-r
2
•(-2)rx-
r
3
=(-2)r
C
r
7
x
21-5r
6

 令
21-5r
6
=1
得r=3,可得 T4=(-2)3
C
3
7
x=-280x

即所求一次项为-280x.
点评:本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,求展开式中某项的系数,注意各项系数和与各项的二项式系数和的区别,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设双曲线的左右焦点为F1,F2,P为双曲线上一点,求证:若PT平分△PF1F2在点P处的内角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点.

查看答案和解析>>

科目:高中数学 来源: 题型:

菱形ABCD边长为2,∠BAD=60°,将ABCD沿对角线BD折叠,使得平面ABD⊥平面CBD,AE⊥平面ABD,且AE=
3

(1)求证:DE⊥AC;
(2)求证:直线BE上是否存在一点M,使得CM∥平面ADE,若存在,求点M的位置,不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)写出命题“末位数字是0或5的整数能被5整除”的否命题及命题的否定形式(非p形式).
(2)求使函数y=(a2+4a-5)x2-4(a-1)x+3的图象全在x轴上方的充分必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C的极坐标方程为:ρ=2
3
cosθ,直线的极坐标方程为:2ρcosθ=
3
.则它们相交所得弦长等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直四棱柱ANCD-A1B1C1D1中,已知DC=DD1=2AD=2AB=2,AD⊥DC,AB∥DC.
(1)求证:D1C⊥AC1
(2)求直线D1C与平面A1BD所成的角;
(3)求点C1到平面A1BD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a1=2,点(an,an+1)在函数f(x)=x2+2x的图象上,其中n=1,2,3…
(1)证明数列{lg(1+an)}是等比数列
(2)设Tn=(1+a1)(1+a2)…(1+an),求Tn及数列{an}的通项
(3)记bn=
1
an
+
1
an+2
,设数列{bn}的前n项和Sn,证明
3
4
Sn
<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

有甲、乙、丙、丁、戊5位同学,求:
(1)5位同学站成一排,有多少种不同的方法?
(2)5位同学站成一排,要求甲乙必须相邻,丙丁不能相邻,有多少种不同的方法?
(3)将5位同学分配到三个班,每班至少一人,共有多少种不同的分配方法?

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知P为双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)右支上的一点,F1,F2分别为双曲线的左、右焦点,圆C为三角形PF1F2的内切圆,求圆C的圆心的横坐标.

查看答案和解析>>

同步练习册答案