精英家教网 > 高中数学 > 题目详情

【题目】已知数列中,,且对任意的,都有,则( )

A. B. C. D.

【答案】D

【解析】分析:令m=1,可得an+1﹣an=n+1,再利用累加法可得的通项,再利用裂项法得到==2(),从而可求得的值.

详解:∵a1=1,且对任意的m,n∈N*,都有am+n=am+an+mn,

令m=1,则an+1=a1+an+n=an+n+1,

即an+1﹣an=n+1,

∴an﹣an﹣1=n(n≥2),

…,

a2﹣a1=2,

∴an=(an﹣an﹣1)+(an﹣1﹣an﹣2)+…+(a2﹣a1)+a1=n+(n﹣1)+(n﹣2)+…+3+2+1=

==2(),

=2[(1﹣)+()+…+()+()+()]=2(1﹣)=

故选:D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校从学生会宣传部6名成员(其中男生4人,女生2)中,任选3人参加某省举办的我看中国改革开放三十年演讲比赛活动.

(1)设所选3人中女生人数为ξ,求ξ的分布列;

(2)求男生甲或女生乙被选中的概率;

(3)男生甲被选中为事件A女生乙被选中为事件B,求P(B)P(B|A)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】退休年龄延迟是平均预期寿命延长和人口老龄化背景下的一种趋势.某机构为了解某城市市民的年龄构成,按的比例从年龄在20~80岁(含20岁和80岁)之间的市民中随机抽取600人进行调查,并将年龄按进行分组,绘制成频率分布直方图,如图所示.规定年龄在岁的人为“青年人”,岁的人为“中年人”, 岁的人为“老年人”.

(Ⅰ)根据频率分布直方图估计该城市60岁以上(含60岁)的人数,若每一组中的数据用该组区间的中点值来代表,试估算所调查的600人的平均年龄;

(Ⅱ)将上述人口分布的频率视为该城市年龄在20~80岁的人口分布的概率,从该城市年龄在20~80岁的市民中随机抽取3人,记抽到“老年人”的人数为,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数=

(1)写出该函数的单调区间;

(2)若函数=-m恰有3个不同零点,求实数m的取值范围;

(3)若n2-2bn+1对所有x∈[-1,1],b∈[-1,1]恒成立,求实数n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】地震、海啸、洪水、森林大火等自然灾害频繁出现,紧急避险常识越来越引起人们的重视.某校为了了解学生对紧急避险常识的了解情况,从高一年级和高二年级各选取100名同学进行紧急避险常识知识竞赛.图(1)和图(2)分别是对高一年级和高二年级参加竞赛的学生成绩按分组,得到的频率分布直方图.

(Ⅰ)根据成绩频率分布直方图分别估计参加这次知识竞赛的两个年级学生的平均成绩;

(Ⅱ)完成下面列联表,并回答是否有的把握认为“两个年级学生对紧急避险常识的了解有差异”?

成绩小于60分人数

成绩不小于60分人数

合计

高一年级

高二年级

合计

附:

临界值表:

0.10

0.05

0.010

2.706

3.841

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为实数).

(I)讨论函数的单调性;

(II)若上的恒成立,求的范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:

①已知,“”是“”的充分条件;

②已知平面向量,“”是“”的必要不充分条件;

③已知,“”是“”的充分不必要条件;

④命题:“,使”的否定为:“,都有”.其中正确命题的个数是( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市举办数学知识竞赛活动,共5000名学生参加,竞赛分为初试和复试,复试环节共3道题,其中2道单选题,1道多选题,得分规则如下:参赛学生每答对一道单选题得2分,答错得O分,答对多选题得3分,答错得0分,答完3道题后的得分之和为参赛学生的复试成绩.

(1)通过分析可以认为学生初试成绩服从正态分布,其中,试估计初试成绩不低于90分的人数;

(2)已知小强已通过初试,他在复试中单选题的正答率为,多选题的正答率为,且每道题回答正确与否互不影响.记小强复试成绩为,求的分布列及数学期望.

附:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合.

1)证明:若,则

2)证明:若,则,并由此证明中的元素若满足,则

3)设,试求满足的所有的可能值.

查看答案和解析>>

同步练习册答案