精英家教网 > 高中数学 > 题目详情
4.已知椭圆G:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,长轴长为4,过点(m,0)作圆x2+y2=1的切线l交椭圆G于A,B两点
(1)求椭圆G的方程;
(2)将|AB|表示为m的函数,并求|AB|的最大值.

分析 (1)由题意可得:$\left\{\begin{array}{l}{\frac{c}{a}=\frac{\sqrt{3}}{2}}\\{2a=4}\\{{a}^{2}={c}^{2}+{b}^{2}}\end{array}\right.$,解出即可得出.
(2)设切线l的方程为:ty=x-m.|m|≥1.则$\frac{|m|}{\sqrt{{t}^{2}+1}}$=1,可得m2=t2+1.与椭圆方程联立化为:(t2+4)y2+2tmy+m2-4=0,△>0,4+t2>m2,利用根与系数的关系可得|AB|=$\sqrt{(1+{t}^{2})[({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}]}$,再利用基本不等式的性质即可得出.

解答 解:(1)由题意可得:$\left\{\begin{array}{l}{\frac{c}{a}=\frac{\sqrt{3}}{2}}\\{2a=4}\\{{a}^{2}={c}^{2}+{b}^{2}}\end{array}\right.$,解得a=2,c=$\sqrt{3}$,b=1.
∴椭圆G的方程为$\frac{{x}^{2}}{4}$+y2=1.
(2)设切线l的方程为:ty=x-m.|m|≥1.
则$\frac{|m|}{\sqrt{{t}^{2}+1}}$=1,∴m2=t2+1.
联立$\left\{\begin{array}{l}{ty=x-m}\\{{x}^{2}+4{y}^{2}=4}\end{array}\right.$,化为:(t2+4)y2+2tmy+m2-4=0,
△>0,可得4+t2>m2
∴y1+y2=$\frac{-2tm}{{t}^{2}+4}$,y1y2=$\frac{{m}^{2}-4}{{t}^{2}+4}$,
|AB|=$\sqrt{(1+{t}^{2})[({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}]}$=$\sqrt{(1+{t}^{2})[\frac{4{t}^{2}{m}^{2}}{({t}^{2}+4)^{2}}-\frac{4({m}^{2}-4)}{{t}^{2}+4}]}$=$\frac{4\sqrt{3}|m|}{{m}^{2}+3}$=$\frac{4\sqrt{3}}{|m|+\frac{3}{|m|}}$≤$\frac{4\sqrt{3}}{2\sqrt{3}}$=2,当且仅当|m|=$\sqrt{3}$时取等号.
此时|AB|取得最大值2.

点评 本题考查了椭圆的标准方程及其性质、直线与圆相切的充要条件、直线与椭圆相交弦长问题、一元二次方程的根与系数的关系、基本不等式的性质,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.为了研究“教学方式”对教学质量的影响,某高中英语老师分别用两种不同的教学方法对入学英语平均分和优秀率都相同的甲乙两个高一新班进行教学(勤奋程度和自觉性相同),以下茎叶图为甲乙两班(每班均20人)学生的英语期末成绩,若成绩不低于125分的为优秀,填写下面的2×2列联表,并判断是否有97.5%的把握认为“成绩优秀与教学方式有关”.

 甲班乙班合计
优秀   
非优秀   
合计   
参考公式:X2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}{n}_{2+}{n}_{+1}{{n}_{+2}}^{\;}}$
附表:
P(X2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.计算:sin86°cos34°-cos86°sin214°=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的焦距为4,左右焦点分别为F1,F2,且经过点(-3,2$\sqrt{6}$).
(1)求双曲线C的方程;
(2)若P为双曲线上的一点,且|PF1||PF2|=8,求△PF1F2的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设正项数列{an}的前n项和为Sn,并且对于所有的正整数n,an与1的等差中项等于Sn与1的等比中项.
(1)求数列{an}的通项公式;
(2)设数列{bn}的通项公式bn=ln(1+$\frac{1}{{a}_{n}}$),记Tn是{bn}的前n项和,试比较Tn与$\frac{1}{2}$lnan+1的大小并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知直线l1,l2,l3的斜率分别是k1,k2,k3,其中l1∥l2,且k1,k3是方程2x2-3x-2=0的两根,则k1+k2+k3的值是(  )
A.1B.$\frac{3}{2}$C.$\frac{7}{2}$D.1或$\frac{7}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列说法不正确的是(  )
A.空间中,一组对边平行且相等的四边形是一定是平行四边形
B.同一平面的两条垂线一定共面
C.三角形一定是平面图形
D.过一条直线有且只有一个平面与已知平面垂直

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知数列{an}中,a1=5,且an+1=an+4(n∈N+),则数列的通项公式an=4n+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=2$\sqrt{3}$sin(x+$\frac{π}{4}$)cos(x+$\frac{π}{4}$)+sin2x
(1)求f(x)的最小正周期;
(2)若将f(x)的图象向右平移$\frac{π}{6}$个单位,得到函数g(x)的图象,求函数g(x)在区间$[{\frac{π}{6},\frac{7π}{12}}]$上的最大值和最小值.

查看答案和解析>>

同步练习册答案