已知椭圆经过点,且两焦点与短轴的一个端点构成等腰直角三角形.
(Ⅰ)求椭圆的方程;
(Ⅱ)动直线交椭圆于、两点,试问:在坐标平面上是否存在一个定点,使得以为直径的圆恒过点.若存在,求出点的坐标;若不存在,请说明理由.
(1)(2)点就是所求的点
解析试题分析:(Ⅰ)椭圆的两焦点与短轴的一个端点连线构成等腰直角三角形,所以,故椭圆的方程为.
又因为椭圆经过点,代入可得,2分
所以,故所求椭圆方程为.4分
(Ⅱ)当直线的斜率为0时,直线为,直线交椭圆于、两点,以为直径的圆的方程为;
当直线的斜率不存在时,直线为,直线交椭圆于、两点,以为直径的圆的方程为,
由解得
即两圆相切于点,因此,所求的点如果存在,只能是.8分
事实上,点就是所求的点.
证明如下:
当的斜率不存在时,以为直径的圆过点.9分
若的斜率存在时,可设直线为,
由消去得.
记点、,则 10分
又因为,
所以
.
所以,即以为直径的圆恒过点,12分
所以在坐标平面上存在一个定点满足条件.13分
考点:直线与椭圆的位置关系
点评:主要是考查了解析几何中运用代数的方法来建立方程组结合韦达定理来研究位置关系的运用,属于中档题。
科目:高中数学 来源: 题型:解答题
已知椭圆过点,其长轴、焦距和短轴的长的平方依次成等差数列.直线与轴正半轴和轴分别交于点、,与椭圆分别交于点、,各点均不重合且满足
(1)求椭圆的标准方程;
(2)若,试证明:直线过定点并求此定点.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的离心率为,短轴的一个端点到右焦点的距离为,直线交椭圆于不同的两点。
(1)求椭圆的方程;
(2)若坐标原点到直线的距离为,求面积的最大值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知M (-3,0)﹑N (3,0),P为坐标平面上的动点,且直线PM与直线PN的斜率之积为常数m (m,m0),点P的轨迹加上M、N两点构成曲线C.
求曲线C的方程并讨论曲线C的形状;
(2) 若,曲线C过点Q (2,0) 斜率为的直线与曲线C交于不同的两点A﹑B,AB中点为R,直线OR (O为坐标原点)的斜率为,求证 为定值;
(3) 在(2)的条件下,设,且,求在y轴上的截距的变化范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
若椭圆的左、右焦点分别为F1,F2,椭圆的离心率为:2.(1)过点C(-1,0)且以向量为方向向量的直线交椭圆于不同两点A、B,若,则当△OAB的面积最大时,求椭圆的方程。
(2)设M,N为椭圆上的两个动点,,过原点O作直线MN的垂线OD,垂足为D,求点D的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知点是椭圆的右焦点,点、分别是轴、
轴上的动点,且满足.若点满足.
(Ⅰ)求点的轨迹的方程;
(Ⅱ)设过点任作一直线与点的轨迹交于、两点,直线、与直线分别交
于点、(为坐标原点),试判断是否为定值?若是,求出这个定值;若不是,
请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的两焦点是F1(0,-1),F2(0,1),离心率e=
(1)求椭圆方程;(2)若P在椭圆上,且|PF1|-|PF2|=1,求cos∠F1PF2。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com