精英家教网 > 高中数学 > 题目详情

已知椭圆的离心率为,短轴的一个端点到右焦点的距离为,直线交椭圆于不同的两点
(1)求椭圆的方程;
(2)若坐标原点到直线的距离为,求面积的最大值。

(1)(2)

解析试题分析:(1)由,椭圆的方程为:
(2)由已知,联立,消去,整理可得:
,则

,当且仅当时取等号
显然时,
考点:本题考查了椭圆的方程及直线与椭圆的位置关系
点评:椭圆的概念和性质,仍将是今后命题的热点,定值、最值、范围问题将有所加强;利用直线、弦长、圆锥曲线三者的关系组成的各类试题是解析几何中长盛不衰的主题,其中求解与相交弦有关的综合题仍是今后命题的重点;与其它知识的交汇(如向量、不等式)命题将是今后高考命题的一个新的重点、热点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知点是离心率为的椭圆上的一点,斜率为的直线交椭圆两点,且三点不重合.
(1)求椭圆的方程;
(2)的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知椭圆的中心在原点,其上、下顶点分别为,点在直线上,点到椭圆的左焦点的距离为.

(Ⅰ)求椭圆的标准方程;
(Ⅱ)设是椭圆上异于的任意一点,点轴上的射影为的中点,直线交直线于点的中点,试探究:在椭圆上运动时,直线与圆:的位置关系,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线的顶点在坐标原点,焦点为,点是点关于轴的对称点,过点的直线交抛物线于两点。
(1)试问在轴上是否存在不同于点的一点,使得轴所在的直线所成的锐角相等,若存在,求出定点的坐标,若不存在说明理由。
(2)若的面积为,求向量的夹角;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知双曲线的渐近线方程为,左焦点为F,过的直线为,原点到直线的距离是
(1)求双曲线的方程;
(2)已知直线交双曲线于不同的两点CD,问是否存在实数,使得以CD为直径的圆经过双曲线的左焦点F。若存在,求出m的值;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线()上一点到其准线的距离为.

(Ⅰ)求的值;
(Ⅱ)设抛物线上动点的横坐标为),过点的直线交于另一点,交轴于点(直线的斜率记作).过点的垂线交于另一点.若恰好是的切线,问是否为定值?若是,求出该定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知抛物线的焦点为,过焦点且不平行于轴的动直线交抛物线于两点,抛物线在两点处的切线交于点.

(Ⅰ)求证:三点的横坐标成等差数列;
(Ⅱ)设直线交该抛物线于两点,求四边形面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆经过点,且两焦点与短轴的一个端点构成等腰直角三角形.
(Ⅰ)求椭圆的方程;
(Ⅱ)动直线交椭圆两点,试问:在坐标平面上是否存在一个定点,使得以为直径的圆恒过点.若存在,求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知平面内一动点到点的距离与点轴的距离的差等于1.(I)求动点的轨迹的方程;(II)过点作两条斜率存在且互相垂直的直线,设与轨迹相交于点与轨迹相交于点,求的最小值.

查看答案和解析>>

同步练习册答案