精英家教网 > 高中数学 > 题目详情

已知抛物线的顶点在坐标原点,焦点为,点是点关于轴的对称点,过点的直线交抛物线于两点。
(1)试问在轴上是否存在不同于点的一点,使得轴所在的直线所成的锐角相等,若存在,求出定点的坐标,若不存在说明理由。
(2)若的面积为,求向量的夹角;

(1)存在T(1,0)(2) 

解析试题分析:(1)由题意知:抛物线方程为:          -1分

设直线代入


                     2分
假设存在满足题意,则

                    5分
      存在T(1,0)              -6分
(2)(法一)

                         7分
设直线OA,OB的倾斜角分别为
       9分

    11分
                 12分
法二:
               7分
            9分
        11分
             12分
考点:本题考查了抛物线的方程及直线与抛物线的关系
点评:解答抛物线综合题时,应根据其几何特征熟练的转化为数量关系(如方程、函数),再结合代数方法解答,这就要学生在解决问题时要充分利用数形结合、设而不求、弦长公式及韦达定理综合思考,重视对称思想、函数与方程思想、等价转化思想的应用。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆的中心在坐标原点,焦点在轴上,其左、右焦点分别为,短轴长为,点在椭圆上,且满足的周长为6.
(Ⅰ)求椭圆的方程;;
(Ⅱ)设过点的直线与椭圆相交于A、B两点,试问在x轴上是否存在一个定点M使恒为定值?若存在求出该定值及点M的坐标,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆过点,其长轴、焦距和短轴的长的平方依次成等差数列.直线轴正半轴和轴分别交于点,与椭圆分别交于点,各点均不重合且满足
(1)求椭圆的标准方程;
(2)若,试证明:直线过定点并求此定点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知平面上动点P()及两个定点A(-2,0),B(2,0),直线PA、PB的斜率分别为 且
(I)求动点P所在曲线C的方程。
(II)设直线与曲线C交于不同的两点M、N,当OM⊥ON时,求点O到直线的距离。(O为坐标原点)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

分别是椭圆的左,右焦点。
(Ⅰ)若是第一象限内该椭圆上的一点,且,求点的坐标。
(Ⅱ)设过定点的直线与椭圆交于不同的两点,且为锐角(其中O为坐标原点),求直线的斜率的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知双曲线的离心率为,右准线方程为
(Ⅰ)求双曲线C的方程;
(Ⅱ)已知直线与双曲线C交于不同的两点AB,且线段AB的中点在圆上,求实数m的值。  

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为,短轴的一个端点到右焦点的距离为,直线交椭圆于不同的两点
(1)求椭圆的方程;
(2)若坐标原点到直线的距离为,求面积的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知M (-3,0)﹑N (3,0),P为坐标平面上的动点,且直线PM与直线PN的斜率之积为常数m (mm0),点P的轨迹加上MN两点构成曲线C.
求曲线C的方程并讨论曲线C的形状;
(2) 若,曲线C过点Q (2,0) 斜率为的直线与曲线C交于不同的两点ABAB中点为R,直线OR (O为坐标原点)的斜率为,求证 为定值;
(3) 在(2)的条件下,设,且,求y轴上的截距的变化范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知点是椭圆的右焦点,点分别是轴、
轴上的动点,且满足.若点满足
(Ⅰ)求点的轨迹的方程;
(Ⅱ)设过点任作一直线与点的轨迹交于两点,直线与直线分别交
于点为坐标原点),试判断是否为定值?若是,求出这个定值;若不是,
请说明理由.

查看答案和解析>>

同步练习册答案