精英家教网 > 高中数学 > 题目详情

【题目】已知向量 =(﹣2,1), =(3,﹣4).
(1)求( + )(2 )的值;
(2)求向量 + 的夹角.

【答案】
(1)解:向量 =(﹣2,1), =(3,﹣4).

+ )=(1,﹣3),(2 )=(﹣7,6).

所以( + )(2 )=﹣7﹣18=﹣25.


(2)解: + =(1,﹣3),

cos< + >= = =﹣

向量 + 的夹角为135°.


【解析】(1)利用向量的坐标求解所求向量的坐标,利用数量积运算法则求解即可.(2)利用数量积求解向量的夹角即可.
【考点精析】认真审题,首先需要了解数量积表示两个向量的夹角(设都是非零向量,的夹角,则).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】各项均为正数的等差数列{an}前n项和为Sn , 首项a1=3,数列{bn} 为等比数列,首项b1=1,且b2S2=64,b3S3=960.
(1)求an和bn
(2)设f(n)= (n∈N*),求f(n)最大值及相应的n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是否存在同时满足下列两条件的直线l:l与抛物线y2=8x有两个不同的交点A和B;线段AB被直线l1:x+5y﹣5=0垂直平分.若不存在,说明理由,若存在,求出直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题.他们在沙滩上画点或用小石子表示数,按照点或小石子能排列的形状对数进行分类.如下图中实心点的个数5,9,14,20,…为梯形数.根据图形的构成,记此数列的第2013项为a2013 , 则a2013﹣5=(
A.2019×2013
B.2019×2012
C.1006×2013
D.2019×1006

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=4cosxsin(x+ )+a的最大值为2.
(1)求a的值及f(x)的最小正周期;
(2)求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司计划种植A,B两种中药材,该公司最多能承包50亩的土地,可使用的周转资金不超过54万元,假设药材A售价为0.55万元/吨,产量为4吨/亩,种植成本1.2万元/亩;药材B售价为0.3万元/吨,产量为6吨/亩,种植成本0.9万元/亩时公司的总利润最大,则A,B两种中药材的种植面积应各为多少亩,最大利润为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)= (m∈R,x>m).
(1)若f(x)+m≥0恒成立,求m的取值范围;
(2)若f(x)的最小值为6,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市为了节约生活用水,计划在本市试行居民生活用水定额管理(即确定一个居民月均用水量标准03.5,用水量不超过a的部分按照平价收费,超过a的部分按照议价收费).为了较为合理地确定出这个标准,通过抽样获得了 100位居民某年的月均用水量(单位:t),制作了频率分布直方图.

(1)由于某种原因频率分布直方图部分数据丢失,请在图中将其补充完整;
(2)用样本估计总体,如果希望80%的居民每月的用水量不超出标准03.5,则月均用水量的最低标准定为多少吨,请说明理由;
(3)从频率分布直方图中估计该100位居民月均用水量的平均数(同一组中的数据用该区间的中点值代表).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB= PD. (Ⅰ)证明:平面PQC⊥平面DCQ
(Ⅱ)求二面角Q﹣BP﹣C的余弦值.

查看答案和解析>>

同步练习册答案