【题目】如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB= PD. (Ⅰ)证明:平面PQC⊥平面DCQ
(Ⅱ)求二面角Q﹣BP﹣C的余弦值.
【答案】解:如图,以D为坐标原点,线段DA的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系D﹣xyz;
(Ⅰ)依题意有Q(1,1,0),C(0,0,1),P(0,2,0);
则 =(1,1,0), =(0,0,1), =(1,﹣1,0),
所以 =0, =0;
即PQ⊥DQ,PQ⊥DC,
故PQ⊥平面DCQ,
又PQ平面PQC,所以平面PQC⊥平面DCQ;
(Ⅱ)依题意,有B(1,0,1),
=(1,0,0), =(﹣1,2,﹣1);
设 =(x,y,z)是平面的PBC法向量,
则 即 ,
因此可取 =(0,﹣1,﹣2);
设 是平面PBQ的法向量,则 ,
可取 =(1,1,1),
所以cos< , >=﹣ ,
故二面角角Q﹣BP﹣C的余弦值为﹣ .
【解析】首先根据题意以D为坐标原点,线段DA的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系D﹣xyz;(Ⅰ)根据坐标系,求出 、 、 的坐标,由向量积的运算易得 =0, =0;进而可得PQ⊥DQ,PQ⊥DC,由面面垂直的判定方法,可得证明;(Ⅱ)依题意结合坐标系,可得B、 、 的坐标,进而求出平面的PBC的法向量 与平面PBQ法向量 ,进而求出cos< , >,根据二面角与其法向量夹角的关系,可得答案.
科目:高中数学 来源: 题型:
【题目】如下图,长方体 中, , ,点 是棱 上一点.
(1)当点 在 上移动时,三棱锥 的体积是否变化?若变化,说明理由;若不变,求这个三棱锥的体积.
(2)当点 在 上移动时,是否始终有 ,证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50],[50,60],…,[80,90],[90,100]
(1)求频率分布图中a的值;
(2)估计该企业的职工对该部门评分不低于80的概率;
(3)从评分在[40,60]的受访职工中,随机抽取2人,求此2人评分都在[40,50]的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设F1 , F2分别是椭圆E:x2+ =1(0<b<1)的左、右焦点,过F1的直线l与E相交于A、B两点,且|AF2|,|AB|,|BF2|成等差数列. (Ⅰ)求|AB|;
(Ⅱ)若直线l的斜率为1,求b的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: (a>b>0)的左、右焦点分别为F1、F2 , 离心率e= ,与双曲线 有相同的焦点. (I)求椭圆C的标准方程;
(II)过点F1的直线l与该椭圆C交于M、N两点,且| + N|= ,求直线l的方程.
(Ⅲ)是否存在圆心在原点的圆,使得该圆的任一条切线与椭圆C有两个交点A、B,且OA⊥OB?若存在,写出该圆的方程,否则,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD. (Ⅰ)证明:PA⊥BD;
(Ⅱ)若PD=AD,求二面角A﹣PB﹣C的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com