精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=sin(ωx+φ)(其中ω>0,|φ|<$\frac{π}{2}$)图象相邻对称轴的距离为$\frac{π}{2}$,一个对称轴中心为(-$\frac{π}{6}$,0),为了得到g(x)=cosx的图象,则只要将f(x)的图象(  )
A.向右平移$\frac{π}{6}$个单位B.向右平移$\frac{π}{12}$个单位
C.向左平移$\frac{π}{6}$个单位D.向左平移$\frac{π}{12}$个单位

分析 由周期求得ω,根据图象的对称中心求得φ的值,可得函数的解析式,再根据函数y=Asin(ωx+φ)的图象变换规律得出结论.

解答 解:因为函数(f(x)=sin(ωx+φ)(其中ω>0,|φ|<$\frac{π}{2}$图象相邻对称轴的距离为$\frac{π}{2}$,
所以函数f(x)的周期为π,
所以ω=2,又一个对称轴中心为(-$\frac{π}{6}$,0),
所以sin[2×$(-\frac{π}{6})+$φ]=0,|φ|<$\frac{π}{2}$,所以φ=$\frac{π}{3}$,
所以f(x)=sin(2x+$\frac{π}{3}$)=cos(-$\frac{π}{2}$+2x+$\frac{π}{3}$)=cos(2x-$\frac{π}{6}$)=cos[2(x-$\frac{π}{12}$)],
所以只需要将f(x)的图象向左平移$\frac{π}{12}$个单位,即可得到g(x)=cosx的图象.
故选:D.

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,诱导公式的应用,函数y=Asin(ωx+φ)的图象变换规律,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.函数y=2x+$\sqrt{2x-1}$的值域为[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1的离心率为$\sqrt{5}$,则其渐近线方程为(  )
A.y=±2xB.y=$±\sqrt{2}x$C.y=$±\frac{1}{2}x$D.y=$±\frac{{\sqrt{2}}}{2}x$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若△ABC中,b=3,∠B=$\frac{π}{3}$,则该三角形面积的最大值为$\frac{9\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}的前n项和为Sn,a1=0,a1+a2+a3+…+an+n=an+1,n∈N*
(Ⅰ)求证:数列{an+1}是等比数列;
(Ⅱ)设数列{bn}的前n项和为Tn,b1=1,点(Tn+1,Tn)在直线$\frac{x}{n+1}-\frac{y}{n}=\frac{1}{2}$上,若不等式$\frac{b_1}{{{a_1}+1}}+\frac{b_2}{{{a_2}+1}}+…+\frac{b_n}{{{a_n}+1}}≥m-\frac{9}{{2+2{a_n}}}$对于n∈N*恒成立,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ax+$\frac{a-1}{x}$+1-2a(a>0),若f(x)≥lnx在[1,+∞)上恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若复数z满足(1-i)z=(1+i)2,其中i为虚数单位,则在复平面上复数z对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知在数列{an}中,a1=1,且对任意的n∈N*,恒有2n+1an=2nan+1
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足bn=log2an+1,求数列{$\frac{1}{{b}_{n}{b}_{n+1}}$}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.若点P(x,y)在曲线C的参数方程为$\left\{\begin{array}{l}{x=2+\sqrt{3}cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$(θ为参数,θ∈R),以O为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求曲线C的极坐标方程;
(2)若射线θ=$\frac{π}{4}$(ρ≥0)与曲线C相交于A、B两点,求|OA|+|OB|的值.

查看答案和解析>>

同步练习册答案