精英家教网 > 高中数学 > 题目详情
17.若点P(x,y)在曲线C的参数方程为$\left\{\begin{array}{l}{x=2+\sqrt{3}cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$(θ为参数,θ∈R),以O为极点,x轴的非负半轴为极轴建立极坐标系.
(1)求曲线C的极坐标方程;
(2)若射线θ=$\frac{π}{4}$(ρ≥0)与曲线C相交于A、B两点,求|OA|+|OB|的值.

分析 (1)曲线C的参数方程为$\left\{\begin{array}{l}{x=2+\sqrt{3}cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$(θ为参数),化为(x-2)2+y2=3,把$\left\{\begin{array}{l}{x=ρcosα}\\{y=ρsinα}\end{array}\right.$代入即可化为极坐标方程.
(2)射线θ=$\frac{π}{4}$(ρ≥0)的直角坐标方程为y=x(x≥0),参数方程为$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数,t≥0).代入圆C的直角坐标方程为:${t}^{2}-2\sqrt{2}t+1$=0,利用|OA|+|OB|=|t1+t2|即可得出.

解答 解:(1)曲线C的参数方程为$\left\{\begin{array}{l}{x=2+\sqrt{3}cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$(θ为参数),
化为(x-2)2+y2=3,
把$\left\{\begin{array}{l}{x=ρcosα}\\{y=ρsinα}\end{array}\right.$代入化为极坐标方程:ρ2-4ρcosα+1=0.
(2)射线θ=$\frac{π}{4}$(ρ≥0)的直角坐标方程为y=x(x≥0),参数方程为$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数,t≥0).
代入圆C的直角坐标方程为:${t}^{2}-2\sqrt{2}t+1$=0,
∴t1+t2=2$\sqrt{2}$.
∴|OA|+|OB|=|t1+t2|=2$\sqrt{2}$.

点评 本题考查了极坐标方程与直角方程的互化、直线参数方程的应用、一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=sin(ωx+φ)(其中ω>0,|φ|<$\frac{π}{2}$)图象相邻对称轴的距离为$\frac{π}{2}$,一个对称轴中心为(-$\frac{π}{6}$,0),为了得到g(x)=cosx的图象,则只要将f(x)的图象(  )
A.向右平移$\frac{π}{6}$个单位B.向右平移$\frac{π}{12}$个单位
C.向左平移$\frac{π}{6}$个单位D.向左平移$\frac{π}{12}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)满足f(x)=2f($\frac{1}{x}$),当x∈[1,3],f(x)=lnx,若在区间[$\frac{1}{3}$,3]内,函数g(x)=f(x)-ax与x轴有三个不同的交点,则实数a的取值范围是[$\frac{ln3}{3}$,$\frac{1}{e}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.五位同学在某次考试的数学成绩如茎叶图,则这五位同学这次考试的数学平均分为(  )
A.88B.89C.90D.91

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,网格上的小正方形的边长为1,粗实线画出的是某几何体的三视图,则该组合体的体积为(  )
A.12π+4+4$\sqrt{3}$B.12π+4$\sqrt{3}$C.4π+8D.4π+$\frac{8}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的半焦距为c,过右焦点且斜率为1的直线与双曲线的右支交于两点,若抛物线y2=4cx的准线被双曲线截得的弦长是$\frac{2\sqrt{2}}{3}$be2(e为双曲线的离心率),则e的值为(  )
A.$\frac{\sqrt{6}}{2}$B.$\sqrt{3}$C.$\frac{2}{3}$或3D.$\frac{\sqrt{6}}{2}$或$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.(x2+$\frac{a}{2x}$)6展开式的常数项是15,如图阴影部分是由曲线y=x2和圆x2+y2=a及x轴围成的封闭图形,则封闭图形的面积为(  )
A.$\frac{π}{4}$-$\frac{1}{6}$B.$\frac{π}{4}$+$\frac{1}{6}$C.$\frac{π}{4}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,AB是圆O的直径,且AB=6,CD是弦,BA、CD的延长线交于点P,PA=4,PD=5,则∠COD=60°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若0≤x≤π,则函数$y=sin({\frac{π}{3}+x})cos({\frac{π}{2}+x})$的单调递增区间为[$\frac{π}{3},\frac{5π}{6}$].

查看答案和解析>>

同步练习册答案