| A. | $\frac{π}{4}$-$\frac{1}{6}$ | B. | $\frac{π}{4}$+$\frac{1}{6}$ | C. | $\frac{π}{4}$ | D. | $\frac{1}{6}$ |
分析 用二项式定理得到中间项系数,解得a,然后利用定积分求阴影部分的面积.
解答 解:因为(x2+$\frac{a}{2x}$)6展开式的常数项是15,
所以${C}_{6}^{4}•(\frac{a}{2})^{4}$=15,解得a=2,
所以曲线y=x2和圆x2+y2=2的在第一象限的交点为(1,1)
所以阴影部分的面积为$\frac{π}{4}-{∫}_{0}^{1}(x-{x}^{2})dx$=$\frac{π}{4}-(\frac{1}{2}{x}^{2}-\frac{1}{3}{x}^{3}){|}_{0}^{1}$=$\frac{π}{4}$-$\frac{1}{6}$.
故选:A.
点评 本题考查了二项式定理以及定积分求阴影部分的面积,属于常规题.
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com