精英家教网 > 高中数学 > 题目详情
6.在平面直角坐标系xOy中,曲线$\left\{\begin{array}{l}{x=\sqrt{2}cosφ}\\{y=\sqrt{2}sinφ}\end{array}\right.$(φ为参数)上的两点A,B对应的参数分别为α,α+$\frac{π}{2}$.
(Ⅰ)求AB中点M的轨迹的普通方程;
(Ⅱ)求点(1,1)到直线AB距离的最大值.

分析 (I)A($\sqrt{2}$cosα,$\sqrt{2}$sinα),B(-$\sqrt{2}$sinα,$\sqrt{2}$cosα).设M(x,y),则x=$\frac{\sqrt{2}}{2}$(-sinα+cosα),y=$\frac{\sqrt{2}}{2}$(sinα+cosα).平方相加即可得出.
(II)kAB=$\frac{sinα-cosα}{sinα+cosα}$,利用点斜式可得:(sinα-cosα)x-(sinα+cosα)y+$\sqrt{2}$=0.利用点到直线的距离公式即可得出.

解答 解:(I)A($\sqrt{2}$cosα,$\sqrt{2}$sinα),B(-$\sqrt{2}$sinα,$\sqrt{2}$cosα).设M(x,y),则x=$\frac{\sqrt{2}}{2}$(-sinα+cosα),y=$\frac{\sqrt{2}}{2}$(sinα+cosα).
∴AB中点M的轨迹的普通方程为:x2+y2=1.
(II)kAB=$\frac{\sqrt{2}cosα-\sqrt{2}sinα}{-\sqrt{2}sinα-\sqrt{2}cosα}$=$\frac{sinα-cosα}{sinα+cosα}$,
∴y-$\sqrt{2}$sinα=$\frac{sinα-cosα}{sinα+cosα}$(x-$\sqrt{2}$cosα),化为:(sinα-cosα)x-(sinα+cosα)y+$\sqrt{2}$=0.
∴点(1,1)到直线AB距离=$\frac{|sinα-cosα-sinα-cosα+\sqrt{2}|}{\sqrt{(sinα-cosα)^{2}+(sinα+cosα)^{2}}}$=|$\sqrt{2}$cosα-1|≤$\sqrt{2}$+1.

点评 本题考查了圆的参数方程化为普通方程、点到直线的距离公式、三角函数求值,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知点A(1,2,3),则点A关于平面xOy的对称点B的坐标为(  )
A.(1,-2,-3)B.(-1,2,3)C.(1,2,-3)D.(-1,-2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知x,y,z∈(0,+∞)且x2+y2+z2=1,则3xy+yz的最大值为$\frac{{\sqrt{10}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若x>0,y>0,且x+2y=1,那么$\frac{1}{x}$+$\frac{1}{y}$的最小值是3+2$\sqrt{2}$,2x+3y2的取值范围是$(\frac{3}{4},2)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数$f(x)=\left\{{\begin{array}{l}{{3^{-x}}(x≤0)}\\{\sqrt{x}(x>0)}\end{array}}\right.$,若函数$g(x)=f(x)-\frac{1}{2}x-b$有且仅有两个零点,则实数b的取值范围是(  )
A.0<b<1B.0<b≤1C.$0<b<\frac{1}{2}$D.$\frac{1}{2}<b<1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知f(x)是定义在R上以3为周期的偶函数,若f(1)<1,f(5)=$\frac{2a-3}{a+1}$,则实数a的取值范围为(-1,4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在同一直角坐标系内,存在一条直线l,使得函数y=f(x)与函数y=g(x)的图象关于直线l对称,就称函数y=g(x)是函数y=f(x)的“轴对称函数”.已知函数f(x)=ex(e是自然对数的底数),则下列函数不是函数y=f(x)的“轴对称函数”的是(  )
A.y=2-exB.y=e2-xC.y=-e-xD.y=lnx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=||x-2|-2|,若关于x的方程f(x)=m(m∈R)恰有四个互不相等的实根x1,x2,x3,x4,且x1<x2<x3<x4,则$\frac{{x}_{1}{x}_{2}}{{x}_{3}{x}_{4}}$的取值范围是(  )
A.(-1,0)B.(-$\frac{1}{3}$,0)C.(-$\frac{1}{6}$,0)D.(-$\frac{1}{2}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知a为实数,函数f(x)=ex-2x+2a,x∈R.
(1)求函数f(x)的极值;
(2)求证:当a>ln2-1且x>0时,ex>2x-2a.

查看答案和解析>>

同步练习册答案