精英家教网 > 高中数学 > 题目详情
1.若x>0,y>0,且x+2y=1,那么$\frac{1}{x}$+$\frac{1}{y}$的最小值是3+2$\sqrt{2}$,2x+3y2的取值范围是$(\frac{3}{4},2)$.

分析 x>0,y>0,且x+2y=1,那么$\frac{1}{x}$+$\frac{1}{y}$=(x+2y)$(\frac{1}{x}+\frac{1}{y})$=3+$\frac{2y}{x}$+$\frac{x}{y}$,再利用基本不等式的性质可得其最小值.由x>0,y>0,且x+2y=1,可得x=1-2y>0,0<y$<\frac{1}{2}$.2x+3y2=3y2+2(1-2y)=3$(y-\frac{2}{3})^{2}$+$\frac{2}{3}$,利用二次函数的单调性即可得出.

解答 解:∵x>0,y>0,且x+2y=1,那么$\frac{1}{x}$+$\frac{1}{y}$=(x+2y)$(\frac{1}{x}+\frac{1}{y})$=3+$\frac{2y}{x}$+$\frac{x}{y}$≥3+2$\sqrt{2}$,当且仅当x=$\sqrt{2}$y=$\sqrt{2}$-1时取等号.其最小值是3+2$\sqrt{2}$.
∵x>0,y>0,且x+2y=1,∴x=1-2y>0,解得0<y$<\frac{1}{2}$.
2x+3y2=3y2+2(1-2y)=3$(y-\frac{2}{3})^{2}$+$\frac{2}{3}$∈$(\frac{3}{4},2)$.
故答案分别为:3+2$\sqrt{2}$;$(\frac{3}{4},2)$.

点评 本题考查了基本不等式的性质、二次函数的大小,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.若非零向量$\overrightarrow a$,$\overrightarrow b$满足|$\overrightarrow b$|=1,$\overrightarrow a$与$\overrightarrow b$-$\overrightarrow a$的夹角为120°,则|$\overrightarrow a$|的取值范围是(0,$\frac{2\sqrt{3}}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知x,y满足$\left\{\begin{array}{l}y≥x\\ x+y≤4\\ x≥1\end{array}\right.$,则$\frac{{{y^2}-2xy+3{x^2}}}{x^2}$的取值范围为[2,6].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(1-$\frac{1}{x}$)的定义域为[1,+∞),则函数y=$\frac{f(x)}{\sqrt{[lo{g}_{2}(1-x)]^{2}-1}}$的定义域为∅.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设a,b是两条不同的直线,α,β是两个不同的平面,且a?α,下列说法正确的是(  )
A.若a⊥b,α∥β,则b⊥βB.若b?β,a⊥b,则α⊥βC.若a⊥b,α⊥β,则b∥βD.若b⊥β,α∥β,则a⊥b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,过顶点在原点O,对称轴为y轴的抛物线E上的定点A(2,1)作斜率分别为k1,k2的直线,分别交抛物线E于B,C两点.
(1)求抛物线E的标准方程和准线方程;
(2)若k1+k2=k1k2,且△ABC的面积为8$\sqrt{5}$,求直线BC的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系xOy中,曲线$\left\{\begin{array}{l}{x=\sqrt{2}cosφ}\\{y=\sqrt{2}sinφ}\end{array}\right.$(φ为参数)上的两点A,B对应的参数分别为α,α+$\frac{π}{2}$.
(Ⅰ)求AB中点M的轨迹的普通方程;
(Ⅱ)求点(1,1)到直线AB距离的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=alnx-ax2+1,g(x)=x-ax2+1.
(1)当a=1时,求函数f(x)的极值;
(2)若存在${x_0}∈[1,e],f({x_0})-g({x_0})≥\frac{1+a}{x_0}$,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的渐近线与圆x2+(y+2)2=1没有公共点,则该双曲线的离心率的取值范围为(1,2).

查看答案和解析>>

同步练习册答案