分析 画出约束条件的可行域,求出$\frac{y}{x}$的范围,转化所求的表达式为二次函数的最值求解即可.
解答
解:x,y满足$\left\{\begin{array}{l}y≥x\\ x+y≤4\\ x≥1\end{array}\right.$,的可行域如图:
$\frac{y}{x}$的几何意义是可行域内的点与坐标原点连线的斜率,由可行域可知1≤$\frac{y}{x}$≤kOA,
由$\left\{\begin{array}{l}{x=1}\\{x+y=4}\end{array}\right.$,可得A(1,3),kOA=3.
$\frac{y}{x}$∈[1,3].
$\frac{{{y^2}-2xy+3{x^2}}}{x^2}$=$(\frac{y}{x})^{2}-2•\frac{y}{x}$+3=($\frac{y}{x}-1$)2+2.$\frac{y}{x}-1$∈[0,2],
$\frac{{{y^2}-2xy+3{x^2}}}{x^2}$∈[2,6].
故答案为:[2,6].
点评 本题考查线性规划的应用,考查数形结合以及转化思想的应用,考查计算能力.
科目:高中数学 来源: 题型:选择题
| A. | 若m∥α,m∥β,则α∥β | B. | 若m⊥α,n⊥α,则m∥n | C. | 若α⊥γ,β⊥γ,则α⊥β | D. | 若α⊥β,l?α,则l⊥β |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,-2,-3) | B. | (-1,2,3) | C. | (1,2,-3) | D. | (-1,-2,3) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | $\sqrt{3}$ | C. | 2$\sqrt{3}$ | D. | 4$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 33% | B. | 49% | C. | 62% | D. | 88% |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,0) | B. | (-$\frac{1}{3}$,0) | C. | (-$\frac{1}{6}$,0) | D. | (-$\frac{1}{2}$,0) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com