精英家教网 > 高中数学 > 题目详情
4.已知直线l过点P(-1,-2),且与x轴、y轴的负半轴分别交于A,B两点,当PA•PB最小时,求直线l的方程.

分析 根据题意画出图形,结合图形,表示出PA•PB,求出它取最小值时直线l的方程即可.

解答 解:根据题意,画出图形,如图所示:

设∠BAO=θ,则0°<θ<90°,
PA=$\frac{2}{sinθ}$,PB=$\frac{1}{cosθ}$,
∴PA•PB=$\frac{2}{sinθ•cosθ}$=$\frac{4}{sin2θ}$,
当2θ=90°,即θ=45°时,
PA•PB取得最小值,
此时直线的倾斜角为135°,斜率为-1,
∴直线l的方程为y+2=-1(x+1),
化简得x+y+3=0.

点评 本题考查直角三角形中的边角关系,三角函数的最值问题,也考查了用点斜式求直线的方程的应用问题,
是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.下列各组函数中,f(x)与g(x)表示同一函数的是(  )
A.f(x)=x0,g(x)=1B.$f(x)=\sqrt{x^2}$,g(x)=x
C.f(x)=$\frac{1}{3}{x^2},g(x)=\frac{x^3}{3x}$D.f(x)=$\root{3}{{{x^4}-{x^3}}},g(x)=x•\root{3}{x-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知α是第二象限角.试确定以下角的位置:
(1)2α:
(2)$\frac{α}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若函数f(x)=x-[x],(其中[x]为不超过x的最大整数),g(x)=log${\;}_{\frac{1}{4}}$(x-1),f(x)-g(x)=1的解的个数为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知m为实数,求关于x的不等式x2+2mx+m2-1<0的解.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$.且左右顶点分别为A(一1,0)、B(1,0).
(1)求椭圆的标准方程;
(2)过椭圆的右焦点F且倾斜角为$\frac{π}{4}$的直线l交椭圆于C、D两点,|CF|=λ|DF|(|CF|>|DF|),求λ的值;
(3)过P(-$\frac{5}{3}$,0)的直线交椭圆于M、N两点(异于A、B两点),记直线AM、AN 的斜率分别为k1、k2,问k1与K2的乘积是否为定值?若为定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=$\frac{{x}^{2}}{{x}^{2}+1}$,求 f(1)+f(2)+…+f(2013)+f(2014)+f($\frac{1}{2}$)+f($\frac{1}{3}$)+…+f($\frac{1}{2013}$)+f($\frac{1}{2014}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若xlog52≥-1,则函数f(x)=4x-2x+1-3的最小值为(  )
A.-4B.-2C.-1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在实数集R中,我们定义的大小关系“>”为全体实数排了一个“序”.类似实数排序的定义,我们定义“点序”记为“>”:已知M(x1,y1)和N(x2,y2),M>N,当且仅当“x1>x2”或“x1=x2且y1>y2”.定义两点的“⊕”与“?”运算如下:M⊕N=(x1+x2,y1+y2)    M?N=x1x2+y1y2.则下面四个命题:
①已知P(2015,2014)和Q(2014,2015),则P>Q;
②已知P(2015,2014)和Q(x,y),若P>Q,则x≤2015,且y≤2014;
③已知P>Q,Q>M,则P>M;
④已知P>Q,则对任意的点M,都有P⊕M>Q⊕M;
⑤已知P>Q,则对任意的点M,都有P?M>Q?M.
其中真命题的序号为①③④(把真命题的序号全部写出).

查看答案和解析>>

同步练习册答案