精英家教网 > 高中数学 > 题目详情
已知圆C:x2+y2+2x-4y+4=0
(1)过P(-2,5)作圆C的切线,求切线方程;
(2)斜率为2的直线与圆C相交,且被圆截得的弦长为
3
,求此直线方程.
(3)Q(x,y)为圆C上的动点,求
x2+y2+6x+4y+13
的最值.
(1)圆C:x2+y2+2x-4y+4=0 即 (x+1)2+(y-2)2=1,表示以C(-1,2)为圆心,半径等于1的圆.
过P(-2,5)作圆C的切线,当切线斜率不存在时,切线方程为 x=-2.
当切线斜率存在时,设切线方程为 y-5=k(x+2),即 kx-y+2k+5=0.
由圆心到切线的距离等于半径,可得1=
|-k-2+2k+5|
k2+1
,k=-
4
3
,此时,切线方程为-
4
3
x-y-
8
3
+5=0,即4x+3y-7=0,
故圆的切线方程为 x=-2,或4x+3y-7=0.
(2)斜率为2的直线与圆C相交,且被圆截得的弦长为
3
,可得圆心到直线的距离为
1
2

可设直线的方程为 y=2x+b,即 2x-y+b=0.
1
2
=
|-2-2+b|
22+1
,b=4±
5
2
,故直线方程为 2x-y+4+
5
2
=0,或  2x-y+4-
5
2
=0.
(3)由于
x2+y2+6x+4y+13
=
(x+3)2+(y+2)2
,表示圆上的点Q(x,y)到点(-3,-2)的距离.
由于圆心C(-1,2)到点(-3,-2)的距离等于2
5

x2+y2+6x+4y+13
的最小值为2
5
-1
,最大值为2
5
+1
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C:x2+y2-6x-4y+8=0.以圆C与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件双曲线的标准方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)一个圆与x轴相切,圆心在直线3x-y=0上,且被直线x-y=0所截得的弦长为2
7
,求此圆方程.
(2)已知圆C:x2+y2=9,直线l:x-2y=0,求与圆C相切,且与直线l垂直的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•普陀区一模)如图,已知圆C:x2+y2=r2与x轴负半轴的交点为A.由点A出发的射线l的斜率为k,且k为有理数.射线l与圆C相交于另一点B.
(1)当r=1时,试用k表示点B的坐标;
(2)当r=1时,试证明:点B一定是单位圆C上的有理点;(说明:坐标平面上,横、纵坐标都为有理数的点为有理点.我们知道,一个有理数可以表示为
qp
,其中p、q均为整数且p、q互质)
(3)定义:实半轴长a、虚半轴长b和半焦距c都是正整数的双曲线为“整勾股双曲线”.
当0<k<1时,是否能构造“整勾股双曲线”,它的实半轴长、虚半轴长和半焦距的长恰可由点B的横坐标、纵坐标和半径r的数值构成?若能,请尝试探索其构造方法;若不能,试简述你的理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泸州一模)已知圆C:x2+y2=r2(r>0)与抛物线y2=40x的准线相切,若直线l:
x
a
y
b
=1
与圆C有公共点,且公共点都为整点(整点是指横坐标.纵坐标都是整数的点),那么直线l共有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+y2=4与直线L:x+y+a=0相切,则a=(  )

查看答案和解析>>

同步练习册答案