精英家教网 > 高中数学 > 题目详情
15.己知曲线C:$\left\{\begin{array}{l}{x=3cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数),A、B是曲线C上两点,O为坐标原点,$\overrightarrow{OA}$•$\overrightarrow{OB}$=0
(1)求证:$\frac{1}{|OA{|}^{2}}$+$\frac{1}{|OB{|}^{2}}$为定值.
(2)求$\overrightarrow{|AB|}$的最小值,并以直角坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,在此极坐标系中,求AB所在直线的极坐标方程.

分析 (1)求出曲线C的极坐标方程,由OA⊥OB可设A(ρ1,θ),B(ρ2,$θ+\frac{π}{2}$),代入极坐标方程化简即可;
(2)利用极坐标方程计算)|$\overrightarrow{AB}$|2=|OA|2+|OB|2,根据三角函数的性质求出最小值,根据A,B的极坐标得出AB的极坐标方程.

解答 解:(1)曲线C的普通方程为:$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{4}=1$,
∴曲线C的极坐标方程为:ρ2=$\frac{36}{4co{s}^{2}θ+9si{n}^{2}θ}$,即$\frac{1}{{ρ}^{2}}$=$\frac{co{s}^{2}θ}{9}$+$\frac{si{n}^{2}θ}{4}$.
∵$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,∴OA⊥OB.
设A(ρ1,θ),则B(ρ2,$θ+\frac{π}{2}$),
∴$\frac{1}{|OA{|}^{2}}$+$\frac{1}{|OB{|}^{2}}$=$\frac{co{s}^{2}θ}{9}$+$\frac{si{n}^{2}θ}{4}$+$\frac{co{s}^{2}(θ+\frac{π}{2})}{9}$+$\frac{si{n}^{2}(θ+\frac{π}{2})}{4}$=$\frac{1}{9}+\frac{1}{4}$=$\frac{13}{36}$.
∴$\frac{1}{|OA{|}^{2}}$+$\frac{1}{|OB{|}^{2}}$为定值.
(2)|$\overrightarrow{AB}$|2=|OA|2+|OB|2=$\frac{36}{4co{s}^{2}θ+9si{n}^{2}θ}$+$\frac{36}{4si{n}^{2}θ+9co{s}^{2}θ}$=$\frac{36×13}{36(si{n}^{2}θ+co{s}^{2}θ)^{2}+25si{n}^{2}θco{s}^{2}θ}$=$\frac{36×13}{36+\frac{25}{4}si{n}^{2}2θ}$.
∴当sin22θ=1时,|$\overrightarrow{AB}$|2取得最小值$\frac{36×13}{36+\frac{25}{4}}$=$\frac{144}{13}$.
∴|$\overrightarrow{AB}$|的最小值为$\frac{12}{\sqrt{13}}$=$\frac{12\sqrt{13}}{13}$.
此时,sin22θ=1,∴2θ=$±\frac{π}{2}$+2kπ,∴θ=±$\frac{π}{4}$+kπ.
∴A($\frac{6\sqrt{2}}{\sqrt{13}}$,±$\frac{π}{4}$),B($\frac{6\sqrt{2}}{\sqrt{13}}$,±$\frac{π}{4}+\frac{π}{2}$).
∴AB的方程为y=±$\frac{6}{\sqrt{13}}$或x=±$\frac{6}{\sqrt{13}}$.
∴AB的极坐标方程为ρsinθ=±$\frac{6}{\sqrt{13}}$或ρcosθ=±$\frac{6}{\sqrt{13}}$.

点评 本题考查了参数方程,极坐标方程与普通方程的转化,直线与椭圆的位置关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.执行如图的程序框图,如果输入的N=10,那么输出的S=(  )
A.1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{10}$B.$1+\frac{1}{2}+\frac{1}{3×2}+\frac{1}{2×3×4…×10}$
C.1+$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{11}$D.$1+\frac{1}{2}+\frac{1}{2×3}+\frac{1}{2×3×4…×11}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知正实数a,b,c,d满足a+b+c+d=1.
求证:$\sqrt{1+2a}$+$\sqrt{1+2b}$+$\sqrt{1+2c}$+$\sqrt{1+2d}$≤2$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知抛物线y2=4x,过其焦点F的直线与抛物线交于A,B两点,过A,B分别作y轴的垂线,垂足分别为C,D,则|AC|+|BD|的最小值为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设x>0.
(1)证明:${e^x}>1+x+\frac{1}{2}{x^2}$;
(2)若${e^x}=1+x+\frac{1}{2}{x^2}{e^y}$,证明:0<y<x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=4-t}\\{y=\sqrt{3}t}\end{array}\right.$(t为参数).在以O为极点,x轴的非负半轴为极轴的极坐标系中,曲线C2的极坐标方程为ρ=2sin(θ+$\frac{5π}{6}$).
(I)求曲线C1的普通方程,曲线C2的直角坐标方程;
(Ⅱ)若点P,Q分别在曲线C1、C2上,求|PQ|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知圆C:(x-1)2+y2=16及圆内一点A(-1,0),P是圆上任意一点.线段AP的垂直平分线l和半径CP相交于点Q,当点P在圆上运动时,则点Q的轨迹方程为(  )
A.$\frac{x^2}{4}+\frac{y^2}{3}=1$B.$\frac{x^2}{4}+{y^2}=1$C.$\frac{x^2}{4}-\frac{y^2}{3}=1$D.$\frac{x^2}{4}-{y^2}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知方程$\left\{\begin{array}{l}{x=t+\frac{s}{t}}\\{y=t-\frac{s}{t}}\end{array}\right.$(s,t∈R,且s>0,t>0).若以s为常数、t为参数的方程表示曲线C1;以t为常数、s为参数的方程表示曲线C2,那么C1,C2依次为双曲线,直线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.有三位环保专家从四个城市中每人随机选取一个城市完成一项雾霾天气调查报告,三位专家选取的城市可以相同,也可以不同.
(1)求三位环保专家选取的城市各不相同的概率;
(2)设选取某一城市的环保专家有ξ人,求ξ的分布列及数学期望.

查看答案和解析>>

同步练习册答案