精英家教网 > 高中数学 > 题目详情
3.已知抛物线y2=4x,过其焦点F的直线与抛物线交于A,B两点,过A,B分别作y轴的垂线,垂足分别为C,D,则|AC|+|BD|的最小值为(  )
A.4B.3C.2D.1

分析 求得抛物线的焦点和准线方程,由抛物线的定义,可得|AC|+|BD|=|AF|+|BF|-2=|AB|-2,求得|AB|的最小值即可.

解答 解:抛物线y2=4x的焦点F(1,0),准线方程为x=-1,
由抛物线的定义可得,|AF|=|AC|+1,|BF|=|BD|+1,
即有|AC|+|BD|=|AF|+|BF|-2
=|AB|-2,
当直线AB⊥x轴时,|AB|最小.
令x=1,则y2=4,解得y=±2,
即有|AB|min=4,
则|AC|+|BD|的最小值为2.
故选:C.

点评 本题考查抛物线的定义、方程和性质,主要考查定义法及运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.如图,矩形ABCD中,AB=2,BC=4,点E、G分别为BC、DC中点,点F为EC中点,则矩形去掉阴影部分后,以BC为轴旋转一周所得的几何体的体积是$\frac{29π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.随机将1,2,…,2n(n∈N*,n≥2)这2n个连续正整数分成A,B两组,每组n个数,A组最小数为a1,最大数为a2;B组最小数为b1,最大数为b2,记ξ=a2-a1,η=b2-b1
(1)当n=3时,求ξ的分布列和数学期望;
(2)令C表示事件“ξ与η的取值恰好相等”,事件C发生的概率为p(C).
①当n=2时,求p(C);
②当n∈N*,n>2时,求p(C).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为菱形,且∠BAD=60°,Q,M分别为PA,BC的中点.
(1)证明:直线QM∥平面PCD;
(2)若二面角A-BD-Q所成角正切值为2,求直线QC与平面PAD所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(Ⅰ)已知c>0,关于x的不等式:x+|x-2c|≥2的解集为R.
求实数c的取值范围;
(Ⅱ)若c的最小值为m,又p、q、r是正实数,且满足p+q+r=3m,求证:p2+q2+r2≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.己知曲线C:$\left\{\begin{array}{l}{x=3cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数),A、B是曲线C上两点,O为坐标原点,$\overrightarrow{OA}$•$\overrightarrow{OB}$=0
(1)求证:$\frac{1}{|OA{|}^{2}}$+$\frac{1}{|OB{|}^{2}}$为定值.
(2)求$\overrightarrow{|AB|}$的最小值,并以直角坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,在此极坐标系中,求AB所在直线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知圆的渐开线的参数方程是$\left\{\begin{array}{l}{x=cosφ+φsinφ}\\{y=sinφ-φcosφ}\end{array}\right.$(φ为参数),则此渐开线对应的基圆的直径是2,当参数φ=$\frac{π}{2}$时,对应的曲线上的点的坐标为($\frac{π}{2}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求证:$\frac{1}{2}$<$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{2n}$<1(n>1,n∈N*

查看答案和解析>>

同步练习册答案