分析 设f(n)=$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{2n}$,求得f(n+1),作差,即可判断f(n)递增,可得f(n)>f(1)=$\frac{1}{2}$;再由f(n)中各项都小于$\frac{1}{n}$,累加即可得到f(n)<1,进而得证.
解答 证明:设f(n)=$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{2n}$,
可得f(n+1)=$\frac{1}{n+2}$+$\frac{1}{n+3}$+…+$\frac{1}{2n}$+$\frac{1}{2n+1}$+$\frac{1}{2n+2}$,
即有f(n+1)-f(n)=$\frac{1}{2n+1}$+$\frac{1}{2n+2}$-$\frac{1}{n+1}$=$\frac{1}{2n+1}$-$\frac{1}{2n+2}$
=$\frac{1}{(2n+1)(2n+2)}$>0,
即有f(n)在n>1,n∈N*递增,
可得f(n)>f(1)=$\frac{1}{2}$;
又$\frac{1}{n+1}$<$\frac{1}{n}$,$\frac{1}{n+2}$<$\frac{1}{n}$,…,$\frac{1}{2n}$<$\frac{1}{n}$,
可得f(n)<n•$\frac{1}{n}$=1,
综上可得,$\frac{1}{2}$<f(n)<1.
故原不等式成立.
点评 本题考查不等式的证明,注意运用数列的单调性和不等式的性质,考查推理能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[{\frac{{\sqrt{3}}}{2},1}]$ | B. | $[{\sqrt{3},2}]$ | C. | $[{\frac{{\sqrt{5}}}{2},\frac{{\sqrt{6}}}{2}}]$ | D. | $[{\sqrt{5},\sqrt{6}}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com