分析 原不等式即为2n>$\frac{n(n-1)}{2}$(n≥2,n∈N),由2n=(1+1)n,运用二项式定理即可得证.
解答 证明:$\frac{n}{{2}^{n}}$<$\frac{2}{n-1}$(n≥2,n∈N)即为2n>$\frac{n(n-1)}{2}$(n≥2,n∈N),
由2n=(1+1)n=1+${C}_{n}^{1}$+${C}_{n}^{2}$+…+${C}_{n}^{n-1}$+1,
当n≥2,n∈N,2n>${C}_{n}^{2}$=$\frac{n(n-1)}{2}$,
可得$\frac{n}{{2}^{n}}$<$\frac{2}{n-1}$(n≥2,n∈N)成立.
点评 本题考查不等式的证明,注意运用二项式定理,也可以运用数学归纳法证明,考查化简整理的推理能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 第一排 | 明文字母 | A | B | C |
| 密码数字 | 11 | 12 | 13 | |
| 第二排 | 明文字母 | E | F | G |
| 密码数字 | 21 | 22 | 23 | |
| 第三排 | 明文字母 | M | N | P |
| 密码数字 | 1 | 2 | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com