分析 (1)由抛物线方程求得焦点坐标,进一步得到椭圆左焦点坐标,把(-$\sqrt{3}$,1)代入椭圆方程,结合隐含条件求得a,b的答案;
(2)写出直线l的方程,与椭圆方程联立,利用根与系数的关系得到A,B的横坐标的和与积,代入弦长公式求得线段AB的长度.
解答 解:(1)抛物线y2=-8x的焦点为(-2,0),
∴椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$的左焦点为(-2,0),c=2,b2=a2-4.
又$\frac{3}{a^2}+\frac{1}{b^2}=1$,得a4-8a2+12=0,解得a2=6(a2=2舍去).
故椭圆C的方程为$\frac{x^2}{6}+\frac{y^2}{2}=1$.
(2)直线l的方程为y=x-2.
联立方程组$\left\{\begin{array}{l}{y=x-2}\\{\frac{{x}^{2}}{6}+\frac{{y}^{2}}{2}=1}\end{array}\right.$,
消去y并整理得2x2-6x+3=0.
设A(x1,y1),B(x2,y2).
故x1+x2=3,${x}_{1}{x}_{2}=\frac{3}{2}$.
则$|AB|=\sqrt{1+{k}^{2}}|{x}_{1}-{x}_{2}|$=$\sqrt{(1+{k}^{2})[({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}]}=\sqrt{6}$.
点评 本题考查椭圆标准方程的求法,考查了直线与圆锥曲线位置关系的应用,训练了利用弦长公式求弦长,体现了“设而不求”的解题思想方法,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{x^2}{4}+\frac{y^2}{3}=1$ | B. | $\frac{x^2}{4}+{y^2}=1$ | C. | $\frac{x^2}{4}-\frac{y^2}{3}=1$ | D. | $\frac{x^2}{4}-{y^2}=1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[{\frac{{\sqrt{3}}}{2},1}]$ | B. | $[{\sqrt{3},2}]$ | C. | $[{\frac{{\sqrt{5}}}{2},\frac{{\sqrt{6}}}{2}}]$ | D. | $[{\sqrt{5},\sqrt{6}}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 2 | C. | 1 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 2011年 | 2012年 | 2013年 | 2014年 | 2015年 | |
| 甲 | 86 | 77 | 92 | 72 | 78 |
| 乙 | 78 | 82 | 88 | 82 | 95 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com