精英家教网 > 高中数学 > 题目详情
5.有三位环保专家从四个城市中每人随机选取一个城市完成一项雾霾天气调查报告,三位专家选取的城市可以相同,也可以不同.
(1)求三位环保专家选取的城市各不相同的概率;
(2)设选取某一城市的环保专家有ξ人,求ξ的分布列及数学期望.

分析 (1)利用等可能事件概率计算公式能求出三位环保专家选取的城市各不相同的概率.
(2)由题意可知ξ=0,1,2,3,分别求出相应的概率,由此能求出ξ的分布列和数学期望.

解答 解:(1)有三位环保专家从四个城市中每人随机选取一个城市完成一项雾霾天气调查报告,
三位专家选取的城市可以相同,也可以不同,
事件A表示“三位环保专家选取的城市各不相同”,
则三位环保专家选取的城市各不相同的概率$P(A)=\frac{A_4^3}{4^3}=\frac{3}{8}$.
(2)由题意可知ξ=0,1,2,3,
$P(ξ=0)=\frac{3^3}{4^3}=\frac{27}{64}$,
$P(ξ=1)=\frac{{C_3^1•{3^2}}}{4^3}=\frac{27}{64}$,
$P(ξ=2)=\frac{C_3^1•3}{4^3}=\frac{9}{64}$,
$P(ξ=3)=\frac{C_3^3}{4^3}=\frac{1}{64}$,
所以ξ的分布列是:

ξ0123
P$\frac{27}{64}$$\frac{27}{64}$$\frac{9}{64}$$\frac{1}{64}$
数学期望$Eξ=0×\frac{27}{64}+1×\frac{27}{64}+2×\frac{9}{64}+3×\frac{1}{64}=\frac{3}{4}$.

点评 本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求示,是中档题,解题时要认真审题,在历年高考中都是必考题型之一.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.己知曲线C:$\left\{\begin{array}{l}{x=3cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数),A、B是曲线C上两点,O为坐标原点,$\overrightarrow{OA}$•$\overrightarrow{OB}$=0
(1)求证:$\frac{1}{|OA{|}^{2}}$+$\frac{1}{|OB{|}^{2}}$为定值.
(2)求$\overrightarrow{|AB|}$的最小值,并以直角坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,在此极坐标系中,求AB所在直线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若?x,y∈(0,+∞),恒有$\frac{x}{2x+y}$$+\frac{y}{x+2y}$≤a≤$\frac{x}{x+2y}$$+\frac{y}{2x+y}$,则常数a=$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求证:$\frac{1}{2}$<$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{2n}$<1(n>1,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆C1:$\frac{y^2}{a^2}+\frac{x^2}{b^2}$=1(a>b>0)与抛物线C2:x2=y+1有公共弦AB(A在B左边),AB=2,C2的顶点是C1的一个焦点,过点B且斜率为k(k≠0)的直线l与C1、C2分别交于点M、N(均异于点A、B).
(Ⅰ)求C1的方程;
(Ⅱ)若点A在以线段MN为直径的圆外,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.有一种密码,明文由三个字母组成,密码由明文的这三个字母对应的五个数字组成.编码规则如下表.明文由表中每一排取一个字母组成,且第一排取的字母放在第一位,第二排取的字母放在第二位,第三排取的字母放在第三位,对应的密码由明文所取的三个字母对应的数字按相同的次序排成一组组成.(如:明文取的三个字母为AFP,则与它对应的五个数字(密码)就为11223)
第一排明文字母ABC
密码数字111213
第二排明文字母EFG
密码数字212223
第三排明文字母MNP
密码数字123
(1)假设密码是11211,求这个密码对应的明文;
(2)设随机变量ξ表示密码中所含不同数字的个数.
①求P(ξ=2);
②求随机变量ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知F1,F2分别是椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(其中a>b>0)的左、右焦点,椭圆C过点(-$\sqrt{3}$,1)且与抛物线y2=-8x有一个公共的焦点.
(1)求椭圆C的方程;
(2)过椭圆C的右焦点且斜率为1的直线l与椭圆交于A、B两点,求线段AB的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在△ABC中,已知sinA=2cosB•sinC,则△ABC的形状是(  )
A.直角三角形B.等腰三角形C.等腰直角三角形D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知集合S=$\left\{{k\left|{1≤k≤\frac{{{3^n}-1}}{2},k∈{N^*}}\right.}\right\}$(n≥2,且n∈N*).若存在非空集合S1,S2,…,Sn,使得S=S1∪S2∪…∪Sn,且Si∩Sj=∅(1≤i,j≤n,i≠j),并?x,y∈Si(i=1,2,…,n),x>y,都有x-y∉Si,则称集合S具有性质P,Si(i=1,2,…,n)称为集合S的P子集.
(Ⅰ)当n=2时,试说明集合S具有性质P,并写出相应的P子集S1,S2
(Ⅱ)若集合S具有性质P,集合T是集合S的一个P子集,设T′={s+3n|s∈T},求证:?x,y∈T∪T′,x>y,都有x-y∉T∪T′;
(Ⅲ)求证:对任意正整数n≥2,集合S具有性质P.

查看答案和解析>>

同步练习册答案