精英家教网 > 高中数学 > 题目详情
16.若?x,y∈(0,+∞),恒有$\frac{x}{2x+y}$$+\frac{y}{x+2y}$≤a≤$\frac{x}{x+2y}$$+\frac{y}{2x+y}$,则常数a=$\frac{2}{3}$.

分析 由题意可令x=y,推得a=$\frac{2}{3}$,再由作差法,化简和配方,结合恒成立思想即可得到结论.

解答 解:由题意可设x=y,可得$\frac{2}{3}$≤a≤$\frac{2}{3}$,
即有a=$\frac{2}{3}$,
由$\frac{x}{2x+y}$$+\frac{y}{x+2y}$-$\frac{2}{3}$=($\frac{x}{2x+y}$-$\frac{1}{3}$)+($\frac{y}{x+2y}$-$\frac{1}{3}$)=$\frac{x-y}{3(2x+y)}$+$\frac{y-x}{3(x+2y)}$
=-$\frac{(x-y)^{2}}{3(2x+y)(x+2y)}$≤0,
即有$\frac{x}{2x+y}$$+\frac{y}{x+2y}$≤$\frac{2}{3}$,则a≥$\frac{2}{3}$;
由$\frac{x}{x+2y}$$+\frac{y}{2x+y}$-$\frac{2}{3}$=($\frac{x}{x+2y}$-$\frac{1}{3}$)+($\frac{y}{y+2x}$-$\frac{1}{3}$)
=$\frac{2(x-y)}{3(x+2y)}$+$\frac{2(y-x)}{3(y+2x)}$=$\frac{2(x-y)^{2}}{3(x+2y)(y+2x)}$≥0,
可得$\frac{x}{x+2y}$$+\frac{y}{2x+y}$≥$\frac{2}{3}$,即有a≤$\frac{2}{3}$.
综上可得a=$\frac{2}{3}$.
故答案为:$\frac{2}{3}$.

点评 本题考查不等式恒成立问题的解法,注意运用特值法引路,作差法证明,考查运算和推理能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知正实数a,b,c,d满足a+b+c+d=1.
求证:$\sqrt{1+2a}$+$\sqrt{1+2b}$+$\sqrt{1+2c}$+$\sqrt{1+2d}$≤2$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知圆C:(x-1)2+y2=16及圆内一点A(-1,0),P是圆上任意一点.线段AP的垂直平分线l和半径CP相交于点Q,当点P在圆上运动时,则点Q的轨迹方程为(  )
A.$\frac{x^2}{4}+\frac{y^2}{3}=1$B.$\frac{x^2}{4}+{y^2}=1$C.$\frac{x^2}{4}-\frac{y^2}{3}=1$D.$\frac{x^2}{4}-{y^2}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知方程$\left\{\begin{array}{l}{x=t+\frac{s}{t}}\\{y=t-\frac{s}{t}}\end{array}\right.$(s,t∈R,且s>0,t>0).若以s为常数、t为参数的方程表示曲线C1;以t为常数、s为参数的方程表示曲线C2,那么C1,C2依次为双曲线,直线.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.证明:$\frac{1}{2×3}+\frac{1}{3×5}+…+\frac{1}{(n+1)(2n+1)}<\frac{5}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.点P在△ABC的边BC所在直线上,且满足$\overrightarrow{AP$=2m$\overrightarrow{AB}$+n$\overrightarrow{AC}$(m,n∈R),则在平面直角坐标系中,动点Q(m+n,m-n)的轨迹的普通方程为3x+y-2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$与直线x-y=1交于P、Q两点,且OP⊥OQ,其O为坐标原点.若$\frac{{\sqrt{2}}}{2}a≤b≤\frac{{\sqrt{6}}}{3}a$,则a取值范围是(  )
A.$[{\frac{{\sqrt{3}}}{2},1}]$B.$[{\sqrt{3},2}]$C.$[{\frac{{\sqrt{5}}}{2},\frac{{\sqrt{6}}}{2}}]$D.$[{\sqrt{5},\sqrt{6}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.有三位环保专家从四个城市中每人随机选取一个城市完成一项雾霾天气调查报告,三位专家选取的城市可以相同,也可以不同.
(1)求三位环保专家选取的城市各不相同的概率;
(2)设选取某一城市的环保专家有ξ人,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知a,b∈R+,m,n∈N*
(Ⅰ)求证:(an+bn)(am+bm)≤2(am+n+bm+n);
(Ⅱ)求证:$\frac{a+b}{2}$•$\frac{{{a^2}+{b^2}}}{2}$•$\frac{{{a^3}+{b^3}}}{2}$≤$\frac{{{a^6}+{b^6}}}{2}$.

查看答案和解析>>

同步练习册答案