精英家教网 > 高中数学 > 题目详情
11.数列{an}中,a1=1,Sn表示前n项和,且Sn,Sn+1,2S1成等差数列.
(1)计算S1,S2,S3的值;
(2)根据以上结果猜测Sn的表达式,并用数学归纳法证明你的猜想.

分析 (1)Sn,Sn+1,2S1成等差数列,得到2Sn+1=Sn+Sn+1,可求S1,S2,S3的值;
(2)由(1)猜想Sn的表达式,再根据数学归纳法的证题步骤进行证明.

解答 解:(1)S1=a1=1,由已知有2S2=S1+2S2,得S2=$\frac{3}{2}$,
又2S3=S2+2S2,得S3=$\frac{7}{4}$
(2)由以上结果猜测:Sn=$\frac{{2}^{n}-1}{{2}^{n-1}}$  

①当n=1时,S1=$\frac{2-1}{{2}^{1-1}}$=1,猜想成立      
②假设当n=k时猜想成立,则有Sk=$\frac{{2}^{k}-1}{{2}^{k-1}}$
当n=k+1时,∵2Sk+1=Sk+2S1
∴Sk+1=$\frac{{2}^{k}-1}{{2}^{k-1}}$+2=$\frac{{2}^{k+1}-1}{{2}^{k-1}}$,
 ∴S=$\frac{{2}^{k+1}-1}{{2}^{(k+1)-1}}$
∴n=k+1时猜想成立,
故由①和②,可知猜想成立

点评 本题考查数列的性质和应用,第(1)问要注意递推公式的灵活运用,第二问要注意数学归纳法的证明技巧.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.点P在△ABC的边BC所在直线上,且满足$\overrightarrow{AP$=2m$\overrightarrow{AB}$+n$\overrightarrow{AC}$(m,n∈R),则在平面直角坐标系中,动点Q(m+n,m-n)的轨迹的普通方程为3x+y-2=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求证:$\frac{n}{{2}^{n}}$<$\frac{2}{n-1}$(n≥2,n∈N)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.证明不等式:$\frac{x}{\sqrt{y}}$+$\frac{y}{\sqrt{x}}$≥$\sqrt{x}$+$\sqrt{y}$(其中x,y皆为正数).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知a,b∈R+,m,n∈N*
(Ⅰ)求证:(an+bn)(am+bm)≤2(am+n+bm+n);
(Ⅱ)求证:$\frac{a+b}{2}$•$\frac{{{a^2}+{b^2}}}{2}$•$\frac{{{a^3}+{b^3}}}{2}$≤$\frac{{{a^6}+{b^6}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知抛物线E:y2=2px(p>0),焦点为F,若点A(2,m)(m>0)在抛物线E上,且|AF|=3.
(Ⅰ)求抛物线E的方程和A点的坐标;
(Ⅱ)若过点(2,0)且平行于AF的直线l与抛物线E相交于M,N两点,求|MN|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.对任意的实数m,n,当0<n<m<$\frac{1}{a}$,恒有$\frac{\root{m}{n}}{\root{n}{m}}$>$\frac{{n}^{a}}{{m}^{a}}$成立,则实数a的最小值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.(请用分析法证明)若a>0,求证:$\sqrt{a+\frac{1}{a}}$-$\sqrt{2}$≥$\sqrt{a}$+$\frac{1}{{\sqrt{a}}}$-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某数学兴趣小组为了烟瘴视觉和空间能力与性别是否有关,从兴趣小组中按分层抽样的方法抽取50名同学(男30人,女20人),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如表所示:(单位:人)
题型
性别
几何题代数题总计
男同学22830
女同学81220
总计302050
(1)能否据此判断有97.5%的把握认为视觉和空间能力与性别有关?
(2)从这50名同学中随机选取男生和女生各1人,求他们选做的题不同的概率;
(3)已知选择做几何题的8名女生有3人解答正确,从这8人中任意抽取3人对他们的答题情况进行研究,被抽取的女生中解答正确的人数记为X,求X的分布列及数学期望E(X).
附表及公式:
P(k2≥k)0.150.100.050.0250.010
k2.0722.7063.8415.0246.635
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

同步练习册答案