11£®Ëæ»ú½«1£¬2£¬¡­£¬2n£¨n¡ÊN*£¬n¡Ý2£©Õâ2n¸öÁ¬ÐøÕýÕûÊý·Ö³ÉA£¬BÁ½×飬ÿ×én¸öÊý£¬A×é×îСÊýΪa1£¬×î´óÊýΪa2£»B×é×îСÊýΪb1£¬×î´óÊýΪb2£¬¼Ç¦Î=a2-a1£¬¦Ç=b2-b1£®
£¨1£©µ±n=3ʱ£¬Çó¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£»
£¨2£©ÁîC±íʾʼþ¡°¦ÎÓë¦ÇµÄȡֵǡºÃÏàµÈ¡±£¬Ê¼þC·¢ÉúµÄ¸ÅÂÊΪp£¨C£©£®
¢Ùµ±n=2ʱ£¬Çóp£¨C£©£»
¢Úµ±n¡ÊN*£¬n£¾2ʱ£¬Çóp£¨C£©£®

·ÖÎö £¨1£©µ±n=3ʱ£¬¦ÎµÄȡֵ¿ÉÄÜΪ2£¬3£¬4£¬5£¬Çó³öËæ»ú±äÁ¿¦ÎµÄ·Ö²¼ÁУ¬´úÈëÊýѧÆÚÍû¹«Ê½¿ÉµÃÆäÊýѧÆÚÍûE¦Î£®
£¨2£©¸ù¾ÝC±íʾʼþ¡°¦ÎÓë¦ÇµÄȡֵǡºÃÏàµÈ¡±£¬ÀûÓ÷ÖÀà¼Ó·¨Ô­Àí£¬¿ÉµÃʼþC·¢ÉúµÄ¸ÅÂÊP£¨C£©µÄ±í´ïʽ£»

½â´ð ½â£º£¨1£©µ±n=3ʱ£¬¦ÎµÄȡֵ¿ÉÄÜΪ2£¬3£¬4£¬5
ÆäÖÐP£¨¦Î=2£©=$\frac{4}{{C}_{6}^{3}}$=$\frac{1}{5}$£¬
P£¨¦Î=3£©=$\frac{6}{{C}_{6}^{3}}$=$\frac{3}{10}$£¬
P£¨¦Î=4£©=$\frac{6}{{C}_{6}^{3}}$=$\frac{3}{10}$£¬
P£¨¦Î=5£©=$\frac{4}{{C}_{6}^{3}}$=$\frac{1}{5}$£¬
¹ÊËæ»ú±äÁ¿¦ÎµÄ·Ö²¼ÁÐΪ£º

 ¦Î 2 3 4 5
 P$\frac{1}{5}$  $\frac{3}{10}$$\frac{3}{10}$ $\frac{1}{5}$ 
¦ÎµÄÊýѧÆÚÍûE£¨¦Î£©=2¡Á$\frac{1}{5}$+3¡Á$\frac{3}{10}$+4¡Á$\frac{3}{10}$+5¡Á$\frac{1}{5}$=$\frac{7}{2}$£®
£¨2£©¢Ùµ±n=2ʱ£¬P£¨C£©=2¡Á$\frac{1+1}{{C}_{4}^{2}}$=$\frac{2}{3}$£®
¢Úµ±n£¾2ʱ£¬P£¨C£©=2¡Á$\frac{1+1{+C}_{2}^{1}+{C}_{4}^{2}{+C}_{6}^{3}+¡­{+C}_{2n-4}^{n-2}}{{C}_{2n}^{n}}$£®

µãÆÀ ±¾Ì⿼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁкÍÊýѧÆÚÍû£¬ÌâÄ¿×öÆðÀ´²»ÄÑ£¬ÔËËãÁ¿Ò²²»´ó£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®Èçͼ£¬D¡¢E¡¢F·Ö±ðÊÇ¡÷ABCµÄ±ßAB¡¢BC¡¢CAµÄÖе㣬Ôò$\overrightarrow{AF}$+$\overrightarrow{BD}$=£¨¡¡¡¡£©
A£®$\overrightarrow{FD}$B£®$\overrightarrow{FC}$C£®$\overrightarrow{FE}$D£®$\overrightarrow{BE}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªÊýÁÐ{an}£¬a1+2a2+¡­+nan=n£¨n+1£©£¨n+2£©£¬Çóan£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®½«±ß³¤Îª1µÄÕý·½ÐÎAA1O1O£¨¼°ÆäÄÚ²¿£©ÈÆOO1ÐýתһÖÜÐγÉÔ²Öù£¬Èçͼ£¬$\widehat{AC}$³¤Îª$\frac{5¦Ð}{6}$£¬$\widehat{{A}_{1}{B}_{1}}$³¤Îª$\frac{¦Ð}{3}$£¬ÆäÖÐB1ÓëCÔÚÆ½ÃæAA1O1OµÄͬ²à£®
£¨1£©ÇóÔ²ÖùµÄÌå»ýÓë²àÃæ»ý£»
£¨2£©ÇóÒìÃæÖ±ÏßO1B1ÓëOCËù³ÉµÄ½ÇµÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÒÑÖªÕýʵÊýa£¬b£¬c£¬dÂú×ãa+b+c+d=1£®
ÇóÖ¤£º$\sqrt{1+2a}$+$\sqrt{1+2b}$+$\sqrt{1+2c}$+$\sqrt{1+2d}$¡Ü2$\sqrt{6}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªº¯Êýf£¨x£©=|2x+1|£®
£¨1£©½â²»µÈʽf£¨x£©-f£¨x-1£©¡Ü1£»
£¨2£©Èôa£¾0£¬ÇóÖ¤£ºf£¨ax£©-af£¨x£©¡Üf£¨-$\frac{1}{2}$a£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÒÑÖªÅ×ÎïÏßy2=4x£¬¹ýÆä½¹µãFµÄÖ±ÏßÓëÅ×ÎïÏß½»ÓÚA£¬BÁ½µã£¬¹ýA£¬B·Ö±ð×÷yÖáµÄ´¹Ïߣ¬´¹×ã·Ö±ðΪC£¬D£¬Ôò|AC|+|BD|µÄ×îСֵΪ£¨¡¡¡¡£©
A£®4B£®3C£®2D£®1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=4-t}\\{y=\sqrt{3}t}\end{array}\right.$£¨tΪ²ÎÊý£©£®ÔÚÒÔOΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«ÖáµÄ¼«×ø±êϵÖУ¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñ=2sin£¨¦È+$\frac{5¦Ð}{6}$£©£®
£¨I£©ÇóÇúÏßC1µÄÆÕͨ·½³Ì£¬ÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨¢ò£©ÈôµãP£¬Q·Ö±ðÔÚÇúÏßC1¡¢C2ÉÏ£¬Çó|PQ|µÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®µãPÔÚ¡÷ABCµÄ±ßBCËùÔÚÖ±ÏßÉÏ£¬ÇÒÂú×ã$\overrightarrow{AP$=2m$\overrightarrow{AB}$+n$\overrightarrow{AC}$£¨m£¬n¡ÊR£©£¬ÔòÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬¶¯µãQ£¨m+n£¬m-n£©µÄ¹ì¼£µÄÆÕͨ·½³ÌΪ3x+y-2=0£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸