精英家教网 > 高中数学 > 题目详情
2.将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,如图,$\widehat{AC}$长为$\frac{5π}{6}$,$\widehat{{A}_{1}{B}_{1}}$长为$\frac{π}{3}$,其中B1与C在平面AA1O1O的同侧.
(1)求圆柱的体积与侧面积;
(2)求异面直线O1B1与OC所成的角的大小.

分析 (1)直接利用圆柱的体积公式,侧面积公式求解即可.
(2)设点B1在下底面圆周的射影为B,连结BB1,即可求解所求角的大小.

解答 解:(1)将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,圆柱的体积为:π•12•1=π.
侧面积为:2π•1=2π.
(2)设点B1在下底面圆周的射影为B,连结BB1,OB,则OB∥O1B,
∴∠AOB=$\frac{π}{3}$,异面直线O1B1与OC所成的角的大小就是∠COB,
大小为:$\frac{5π}{6}$-$\frac{π}{3}$=$\frac{π}{2}$.

点评 本题考查几何体的体积侧面积的求法,考查两直线所成角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.在平面直角坐标系中,已知曲线C的参数方程方程为$\left\{\begin{array}{l}x=2cosα\\ y=\sqrt{3}sinα\end{array}$(α为参数),在极坐标系中,点M的极坐标为($\sqrt{2}$,$\frac{3}{4}$π).
(I)写出曲线C的普通方程并判断点M与曲线C的位置关系;
(Ⅱ)设直线l过点M且与曲线C交于A、B两点,若|AB|=2|MB|,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设a,b,c为一个三角形的三边,且s2=2ab,这里s=$\frac{1}{2}$(a+b+c).试证明:2b<3a+c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列an}的前n项和为Sn,a1=1,a2=2,且点(Sn,Sn+1)在直线y=tx+1上.
(1)求Sn及an
(2)若数列{bn}满足bn=$\frac{{a}_{n}}{{a}_{n}{a}_{n+1}-3{a}_{n}+1}$(n≥2),b1=1,数列{bn}的前n项和为Tn,求证:当n≥2时,Tn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求满足下列条件的曲线方程
(1)已知抛物线顶点是双曲线16x2-9y2=144的中心,准线过双曲线的左顶点,且垂直于坐标轴,求该抛物线的方程.
(2)已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)与椭圆$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1有相同焦点,直线y=$\sqrt{3}$x为C的一条渐近线,求双曲线C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.随机将1,2,…,2n(n∈N*,n≥2)这2n个连续正整数分成A,B两组,每组n个数,A组最小数为a1,最大数为a2;B组最小数为b1,最大数为b2,记ξ=a2-a1,η=b2-b1
(1)当n=3时,求ξ的分布列和数学期望;
(2)令C表示事件“ξ与η的取值恰好相等”,事件C发生的概率为p(C).
①当n=2时,求p(C);
②当n∈N*,n>2时,求p(C).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(Ⅰ)已知c>0,关于x的不等式:x+|x-2c|≥2的解集为R.
求实数c的取值范围;
(Ⅱ)若c的最小值为m,又p、q、r是正实数,且满足p+q+r=3m,求证:p2+q2+r2≥3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.一个袋中装有5个球,编号为1,2,3,4,5,从中任取3个,用ξ表示取出的3个球中最大编号,则Eξ=4.5.

查看答案和解析>>

同步练习册答案