分析 (1)直接利用圆柱的体积公式,侧面积公式求解即可.
(2)设点B1在下底面圆周的射影为B,连结BB1,即可求解所求角的大小.
解答
解:(1)将边长为1的正方形AA1O1O(及其内部)绕OO1旋转一周形成圆柱,圆柱的体积为:π•12•1=π.
侧面积为:2π•1=2π.
(2)设点B1在下底面圆周的射影为B,连结BB1,OB,则OB∥O1B,
∴∠AOB=$\frac{π}{3}$,异面直线O1B1与OC所成的角的大小就是∠COB,
大小为:$\frac{5π}{6}$-$\frac{π}{3}$=$\frac{π}{2}$.
点评 本题考查几何体的体积侧面积的求法,考查两直线所成角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com